Analyzing Albillo's Matrix No. 3 with the CC-40



#2

In an earlier thread Gene presented results from processing Valentin Albillo's matrix no. 1 with the CC-40. Valentin suggested that additional tests should be submitted including results using his matrix no. 2 and matrix no. 3. I submitted the matrix no. 2 results on May 31. The matrix no. 3 results follow.

Analysis of Albillo 3 on the CC-40.

Determinant of Albillo 3 = -1.0043809112

where as previously noted the minus sign is a recognized problem with the Mathematics module of the CC-40. The Mathematics module of the TI-74 gets correct signs for determinants.

Inverse of matrix no.Albillo 3:

 292945582.4049    699654.87421177   -1933850.970318    4743223.358971   -21244412.115987   75992713.666666  -293114079.2352
12055.18742001 28.873865387142 -79.651363024570 195.1448859989 -874.1700319661 3127.2999426923 -12062.15704319
-90022.61920092 -215.0580829528 594.3965345195 1457.6143899226 6528.3995064483 -23352.69408068 90074.39236040
510682.74419247 1219.6566633336 -3371.2309790954 8268.7755102080 -37034.75422017 132475.63576146 -510976.45736443
-4306738.560514 -10285.93806257 28430.44848146 -69732.50817077 312324.73338398 -1117206.616839 4309215.708312
36726586.086149 87715.72519643 -242446.8618433 594657.85651607 -2663411.829143 9527206.155713 -36747710.541804
-292947244.1249 -699658.85682450 1933861.922259 4743250.241096 21244532.588037 -75993144.778155 293115741.9509

Determinant of Inverse of Albillo 3 = -0.9817382846

Albillo 3 x its inverse:

 0.99       0.000001     0.0001      0.0002      0           0.0002       0      
-0.01 0.999999 -0.000022 0.0001 -0.0001 -0.0001 0.01
-0.005 -0.000008 1.000008 -0.0001 0.0002 -0.0009 0.0014
-0.0045 -0.000009 0.000015 0.999946 0.0001 -0.0009 0.0024
-0.0021 -0.000005 0.000007 -0.000025 1.0001 -0.0003 0.0011
-0.0002 0.000001 -0.000003 0.000002 0 1 -0.0004
0 0.00001 0 0 -0.0004 0.0011 0.99

Determinant of product = -0.9817382846

Norms for Albillo 3 x its inverse - the identity matrix as suggested by Rodger Rosenbaum

Row norm = 0.020323

Column norm = 0.0318

Frobinius norm = 0.0214956891

What's next? I have been so busy transferring all these numbers from my CC-40 to the Forum that I have had very little time to look at the results. Hopefully, I can present some observations later this week.


Possibly Related Threads...
Thread Author Replies Views Last Post
  AFTER HP-Prime update, Shift+Matrix CRASHES Joseph Ec 3 709 12-06-2013, 11:06 AM
Last Post: Joseph Ec
  HP Prime Matrix TERRIBLE bug and question uklo 19 1,885 11-25-2013, 12:10 PM
Last Post: Mic
  HP Prime: editing a matrix Alberto Candel 6 738 11-20-2013, 06:26 PM
Last Post: Helge Gabert
  Absolute Value and Matrix BruceTTT 5 731 11-11-2013, 11:52 PM
Last Post: Walter B
  WP-34S Matrix operations with routine-local registers? Tom Grydeland 1 411 09-04-2013, 10:46 AM
Last Post: Marcus von Cube, Germany
  Matrix Characteristic Polynomial - Reloaded. Ángel Martin 12 1,074 08-22-2013, 05:33 PM
Last Post: Thomas Klemm
  Matrix Richard Berler 3 475 08-18-2013, 06:24 PM
Last Post: Paul Dale
  Advantage/CCD Matrix Challenge Ángel Martin 1 373 08-09-2013, 06:22 PM
Last Post: Thomas Klemm
  [HP -Prime CAS] List, Matrix, Vector as one Array? CompSystems 0 288 07-26-2013, 05:22 PM
Last Post: CompSystems
  Qestion to Valentin Albillo Mike (Stgt) 1 355 07-09-2013, 08:12 PM
Last Post: Valentin Albillo

Forum Jump: