This Mechanical Engineering problem can be solved with the use of the HP35s programs below:
It also demonstrates the use of indirect addressing of the HP35s. It overcomes the use of several variables with clever referencing.Schematic ::
HP35s Program Four Slings Lift CalculationFind the length of slings, the vertical load at each point, the tension in the slings and its angle to the vertical?
Given: A load of W=150t, height of the hook above the flat rectangular (10x20m) plate is H=30m
CG location from reference point 3 is 4m by 5m.Keystrokes Display Description
XEQ R ENTER LOAD LIFTED Enter Load at CG
150 R/S W?
HOOK HEIGHT Height from plane 1234 to hook
30 R/S H?
DIST 3 TO 1 Using Pt 3 as reference distance for edge 1 3 A
10 R/S A?
DIST 3 TO 4 Using Pt 3 as reference distance for edge 3 4
20 R/S B?CG DIST PT3--4 Using Pt 3 as reference distance for CG along axis 3 4
5 R/S C?
CG DIST PT3-1 Using Pt 3 as reference distance for CG along axis 3 1
4 R/S D? LIFT PT 1 TO 4 Enter a number between 1 to 4 for lift point calculations
4 R/S P? Give me the answer for lift point 4
[LOAD, LGTH] R1 Location of values when displayed : row 1
[TENS, ANGL] R2 Location of values when displayed : row 2
[ 22.50, 33.78 ] Load at point vertical and length of slings on stack y
[ 25.30, 27.36 ] Tension in sling and angle of slings to vertical on stack xThe new code listing is as follows:
Line Instruction Comments
R001 LBL R
R002 SF10
R003 LOAD LIFTED Enter load being lifted
R004 PSE
R005 CF 10
R006 INPUT W
R007 SF 10
R008 HOOK HEIGHT Enter the vertical hook height
R009 PSE
R010 CF 10
R011 INPUT H
R012 SF 10
R013 DIST 3 TO 1 Distance in plan from 3 to 1
R014 PSE
R015 CF 10
R016 INPUT A
R017 SF 10
R018 DIST 3 TO 4 Distance in plan from 3 to 4
R019 PSE
R020 CF 10
R021 INPUT B
R022 SF 10
R023 CG DIST PT3---4 CG distance from point 3 direction 4
R024 PSE
R025 CF 10
R026 INPUT C
R027 SF 10
R028 CG DIST PT3-1 CG distance from point 3 direction 1
R029 PSE
R030 CF 10
R031 INPUT D
R032 1
R033 STO I
R034 eqn Wx(B-C)xD÷(AxB)
R035 STO (I) Store load value at point 1
R036 2
R037 STO I
R038 eqn WxCxD÷(AxB)
R039 STO (I) Store load value at point 2
R040 3
R041 STO I
R042 eqn Wx(B-C)x(A-D)÷(AxB)
R043 STO (I) Store load value at point 3
R044 4
R045 STO I
R046 eqn Wx(A-D)xC÷(AxB)
R047 STO (I) Store load value at point 4
R048 11
R049 STO I
R050 eqn SQRT(C^2+(A-D)^2+H^2)
R051 STO (I) Store length value at point 1 : Memory Location 11
R052 12
R053 STO I
R054 eqn SQRT((B-C)^2+(A-D)^2+H^2)
R055 STO (I) Store length value at point 2 : Memory Location 12
R056 13
R057 STO I
R058 eqn SQRT(C^2+D^2+H^2)
R059 STO (I) Store length value at point 3 : Memory Location 13
R060 14
R061 STO I
R062 eqn SQRT((B-C)^2+D^2+H^2)
R063 STO (I) Store length value at point 4 : Memory Location 14
R064 4 Number of legs, loops = 4
R065 STO N
R066 RCL N Routine to store tension & angle to vertical in indirect addressing
R067 1
R068 -
R069 N Eg:- Loop 1 , N=4
R070 STO J
R071 RCL (J)
R072 N+10
R073 STO J
R074 RCL (J)
R075 REGZ
R076 x
R077 H
R078 ÷
R079 eqn 30+N
R080 STO I
R081 REGY
R082 STO (I) Stores Tension at location 31, 32, 33 & 34
R083 10+N
R084 STO J
R085 RCL (J)
R086 H
R087 x<>y Swap x with y register
R088 ÷
R089 ACOS
R090 eqn 40+N
R091 STO I
R092 REGY
R093 STO (I) Stores Angle at location 41, 42, 43 & 44
R094 DSE N Decrease counter
R095 GTO R066 Loop back
R096 SF10
R097 eqn LIFT PT 1 TO 4
R098 PSE
R099 CF 10
R100 INPUT P
R101 SF10
R102 eqn [LOAD, LGTH] R1 Display load, length in array
R103 PSE
R104 eqn [TENS, ANGL] R2 Display tension and angle of slings in array
R105 PSE
R106 CF 10
R107 P+30
R108 STO J
R109 RCL (J)
R110 P+40
R111 STO J
R112 RCL (J)
R113 [REGZ, REGX]
R114 STO X
R115 P
R116 STO J
R117 RCL (J)
R118 P+10
R119 STO J
R120 RCL (J)
R121 [REGZ, REGX] Display load, length in array : Register Y
R122 RCL X Display tension and angle of slings in array : Register X
R123 STOPLN=707 Checksum=E01C (This might be meaningless apparently)
Compiled by Jean-Marc Biram, Copyright © 2007 Free Software Foundation
Distributed under the version 3, GNU general public license
HP35s Program Four Slings Lift Calculation
|
|
« Next Oldest | Next Newest »
|
▼
Post: #2
12-13-2013, 02:49 AM
▼
Post: #3
12-16-2013, 08:17 AM
Cool. Can you edit the message to correct the link? It needs a colon after "http" Dave ▼
Post: #4
12-16-2013, 07:21 PM
I was unable to edit/correct the link above "Moderator Restricted" or add a picture.
I have added the Schematic link :: below HP35s Program Four Slings Lift CalculationCheers! |