HP35s Program Four Slings Lift Calculation « Next Oldest | Next Newest »

```This Mechanical Engineering problem can be solved with the use of the HP35s programs below:
It also demonstrates the use of indirect addressing of the HP35s. It overcomes the use of several variables with clever referencing.
Schematic ::
HP35s Program Four Slings Lift Calculation
Find the length of slings, the vertical load at each point, the tension in the slings and its angle to the vertical?
Given: A load of W=150t, height of the hook above the flat rectangular (10x20m) plate is H=30m
CG location from reference point 3 is 4m by 5m.
Keystrokes 	Display 	Description
150 R/S 	        W?
HOOK HEIGHT 	Height from plane 1234 to hook
30 R/S 	                H?
DIST 3 TO 1 	Using Pt 3 as reference distance for edge 1 3 A
10 R/S 	                A?
DIST 3 TO 4 	Using Pt 3 as reference distance for edge 3 4
20 R/S 	                B?
CG DIST PT3--4 	Using Pt 3 as reference distance for CG along axis 3 4
5 R/S 	                C?
CG DIST PT3-1 	Using Pt 3 as reference distance for CG along axis 3 1
4 R/S                 	D? 		LIFT PT 1 TO 4 	Enter a number between 1 to 4 for lift point calculations
4 R/S 	                P? 	Give me the answer for lift point 4
[LOAD, LGTH] R1 	Location of values when displayed : row 1
[TENS, ANGL] R2 	Location of values when displayed : row 2
[ 22.50, 33.78 ] 	Load at point vertical and length of slings on stack y
[ 25.30, 27.36 ] 	Tension in sling and angle of slings to vertical on stack x
The new code listing is as follows:
R001 	LBL R
R002 	SF10
R004 	PSE
R005 	CF 10
R006 	INPUT W
R007 	SF 10
R008 	HOOK HEIGHT 	Enter the vertical hook height
R009 	PSE
R010 	CF 10
R011 	INPUT H
R012 	SF 10
R013 	DIST 3 TO 1 	Distance in plan from 3 to 1
R014 	PSE
R015 	CF 10
R016 	INPUT A
R017 	SF 10
R018 	DIST 3 TO 4 	Distance in plan from 3 to 4
R019 	PSE
R020 	CF 10
R021 	INPUT B
R022 	SF 10
R023 	CG DIST PT3---4 	CG distance from point 3 direction 4
R024 	PSE
R025 	CF 10
R026 	INPUT C
R027 	SF 10
R028 	CG DIST PT3-1 	CG distance from point 3 direction 1
R029 	PSE
R030 	CF 10
R031 	INPUT D
R032 	1
R033 	STO I
R034 	eqn Wx(B-C)xD÷(AxB)
R035 	STO (I) 	Store load value at point 1
R036 	2
R037 	STO I
R038 	eqn WxCxD÷(AxB)
R039 	STO (I) 	Store load value at point 2
R040 	3
R041 	STO I
R042 	eqn Wx(B-C)x(A-D)÷(AxB)
R043 	STO (I) 	Store load value at point 3
R044 	4
R045 	STO I
R046 	eqn Wx(A-D)xC÷(AxB)
R047 	STO (I) 	Store load value at point 4
R048 	11
R049 	STO I
R050 	eqn SQRT(C^2+(A-D)^2+H^2)
R051 	STO (I) 	Store length value at point 1 : Memory   Location 11
R052 	12
R053 	STO I
R054 	eqn SQRT((B-C)^2+(A-D)^2+H^2)
R055 	STO (I) 	Store length value at point 2 : Memory Location 12
R056 	13
R057 	STO I
R058 	eqn SQRT(C^2+D^2+H^2)
R059 	STO (I) 	Store length value at point 3 : Memory Location 13
R060 	14
R061 	STO I
R062 	eqn SQRT((B-C)^2+D^2+H^2)
R063 	STO (I) 	Store length value at point 4 : Memory Location 14
R064 	4 	Number of legs, loops = 4
R065 	STO N
R066 	RCL N 	Routine to store tension & angle to vertical in indirect addressing
R067 	1
R068 	-
R069 	N 	Eg:- Loop  1 , N=4
R070 	STO J
R071 	RCL (J)
R072 	N+10
R073 	STO J
R074 	RCL (J)
R075 	REGZ
R076 	x
R077 	H
R078 	÷
R079 	eqn 30+N
R080 	STO I
R081 	REGY
R082 	STO (I) 	Stores Tension at location 31, 32, 33 & 34
R083 	10+N
R084 	STO J
R085 	RCL (J)
R086 	H
R087 	x<>y 	Swap x with y register
R088 	÷
R089 	ACOS
R090 	eqn 40+N
R091 	STO I
R092 	REGY
R093 	STO (I) 	Stores Angle at location 41, 42, 43 & 44
R094 	DSE N 	Decrease counter
R095 	GTO R066 	Loop back
R096 	SF10
R097 	eqn LIFT PT 1 TO 4
R098 	PSE
R099 	CF 10
R100 	INPUT P
R101 	SF10
R103 	PSE
R104 	eqn [TENS, ANGL] R2 	Display tension and angle of slings in array
R105 	PSE
R106 	CF 10
R107 	P+30
R108 	STO J
R109 	RCL (J)
R110 	P+40
R111 	STO J
R112 	RCL (J)
R113 	[REGZ, REGX]
R114 	STO X
R115 	P
R116 	STO J
R117 	RCL (J)
R118 	P+10
R119 	STO J
R120 	RCL (J)
R121 	[REGZ, REGX] 	Display load, length in array : Register Y
R122 	RCL X 	Display tension and angle of slings in array : Register X
R123 	STOP
LN=707 	Checksum=E01C (This might be meaningless apparently)
```

Cool.

Can you edit the message to correct the link? It needs a colon after "http"

Dave

I was unable to edit/correct the link above "Moderator Restricted" or add a picture. 