▼
Posts: 109
Threads: 38
Joined: Dec 2012
desolve example: how do I do this on Prime?
I can't figure out how to execute desolve on an example from the NSpire desolve entry in their refernce guide. The example is: deSolve(y''2*y'/x+(9+2/x^2)*y=x*e^x and y(pi/6)=0 and y(pi/3)=0,x,y)
I used the y'' example as a template from the onboard help. I get empty brackets in CAS and syntax error in home.
▼
Posts: 1,278
Threads: 44
Joined: Jul 2007
I am trying to find out, but I can't solve this in any system I've tried yet including mathematica. Anyone with more experience with ode solving want to chime in with is needed there?
Result spit out by the nspire (shown in 2d at wolfram) is: wolfram 2d display
TW
Edited: 21 Oct 2013, 3:38 p.m.
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
Well, even the good old TI92+ has no problems to solve this ODE:
y=C1*x*cos(3x)+C2*x*sin(3x)+x*e^x/10 (general solution)
And with the 2 initial conditions: C1=e^(pi/3)/10, C2=e^(pi/6)/10
It seems that XCAS could learn something from the old Derive CAS ... ;)
Franz
▼
Posts: 1,278
Threads: 44
Joined: Jul 2007
And mathematica apparently? Don't think so.
Question still stands as to what is happening there since no other tool I've tried likes that input or other variants I've tried and gives *any* result  let alone a similar one.
TW
Edited: 21 Oct 2013, 4:50 p.m.
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
Quote:
Question still stands as to what is happening there since no other tool I've tried likes that input or other variants I've tried and gives *any* result  let alone a similar one.
I've now checked the solution and it's definitely correct.
So the question is not "why Derive or TI92 solve it" but "why do the other CAS not solve it"?
Franz
▼
Posts: 1,278
Threads: 44
Joined: Jul 2007
I believe that was the original question.
TW
Edited: 21 Oct 2013, 5:53 p.m.
Posts: 38
Threads: 0
Joined: Aug 2013
Quote:
It seems that XCAS could learn something from the old Derive CAS ... ;)
You will always find some very specific problem where a miraculous conjunction of parameters value leads to a simple answer. You could even do that by choosing the solution and generating coefficients so that it solves the corresponding equation, then you put it in the examples of the manual, and then you tell to the world look I'm solving this equation, other don't, I'm better.
I'm not saying derive does that but the fact is that generic linear differential equations with non constant coefficients do not have solutions expressed in terms of elementary functions, that's why we define Bessel functions for example. I never bothered to check for very specific conjunction of parameters value where they have. Now of course if someone knows a nice simple algorithm to do that, I'd be happy to implement it!
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
Quote:
Now of course if someone knows a nice simple algorithm to do that, I'd be happy to implement it!
Well, no problem! ;)
The method for linear 2nd order ODEs with constant coefficients can easily
be extended for 2 other types of (similar) ODEs  one an even more general
form and the other one a special type (Euler DE).
I've tried these 2 other types in XCAS and got an "Unable to solve ..." message,
so here's a 'simple algorithm' for implementing in XCAS and HPPrime.
It's the method I've used in my own ODESolver package for the TI92, written
long time ago because the first TI92 versions had no ODE solving commands,
this has been implemented later in the TI92+.
(in pseudocode, because not everyone knows the TI92 language)
y''=u*y'+v*y+w (with u,v,w functions of x)
Type 1 (constant coefficients): u=const and v=const
Type 2 (more general form of type 1):
u and v not constant, but u^2/4u'/2+v=const
Type 3 (special form of type 1, Euler differential equation):
u=a/x and v=b/x^2 (with a,b=const)
Assuming you have a linear 2nd order ODE of the form y''=u*y'+v*y+w,
and the coefficient terms u, v and w are already assigned, here's the
algorithm for the 3 types mentioned above:
k:=u^2/4u'/2+v
if k=const or k*x^2=const then
if k=const then
s:=x
t:=e^(int(u,x)/2)
else
u:=u*x+1
k:=u^2/4+v*x^2
s:=ln(x)
t:=x^(u/2)
endif
if k=0 then
u:=t*s
v:=t
elseif k>0 then
u:=t*e^(sqrt(k)*s)
v:=t*e^(sqrt(k)*s)
else
u:=t*cos(sqrt(k)*s)
v:=t*sin(sqrt(k)*s)
endif
w:=w/(u*v'v*u')
w:=v*int(u*w,x)u*int(v*w,x)
solution: y=c1*u+c2*v+w
endif
Franz
▼
Posts: 38
Threads: 0
Joined: Aug 2013
Great! I'll do it, many thanks!
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
I've now tried a few other ODEs in XCAS, and found some cases where XCAS crashes (i.e. simply exits)  here's one example:
deSolve(y''=x*y'+x^2*(y')^2)
I wanted to test if XCAS can solve Liouville's ODEs of the form
y''=u(x)*y'+v(y)*y'^2, but I simply overlooked that the coefficient v(y) of y'^2 should be a function of y (instead of x).
So my example above was of course no Liouville ODE but even a simpler one (called 'autonom' in German, which means y''=f(x,y') or y''=f(y,y'), i.e. either y or x does not exist in the RHS) which is usually solved by reducing it to a 1st order ODE.
Maybe my example above is not solvable by XCAS, but of course it should not crash!
Franz
Edited: 22 Oct 2013, 8:32 a.m.
▼
Posts: 38
Threads: 0
Joined: Aug 2013
Just tried with the latest source, I can't reproduce a crash. I get
[integrate((c_0+integrate(x^2*exp(x^2/2),x))^1*exp(x^2/2),x)+c_1]
By the way, in France we call autonom an equation independant of the time x, for this one it's not the case, we call it "incomplète en y" (don't know how this is translated in English).
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
Quote:
Just tried with the latest source, I can't reproduce a crash. I get
[integrate((c_0+integrate(x^2*exp(x^2/2),x))^1*exp(x^2/2),x)+c_1]
I've also used the latest XCAS Windows version from yesterday (xcas 1.1.020), and and xcas just exits with this example.
It shows a few lines of error messages, but so quickly that I can't read them.
Franz
▼
Posts: 38
Threads: 0
Joined: Aug 2013
Very strange, as I said it works on my devel box (32 bits linux) but I could reproduce the segfault under linux 64 bits, the messages are
Temporary replacing surd/NTHROOT by fractional powers
Seems to be an infinite loop calling integration, will investigate tomorrow.
Edit:
Well it seems gcc does not always call the same routine when O2 optimization is on or not, which explains the different behavior. Changing one of the homonyms seems to solve the problem, I'll need to make a 1.1.021 update for xcas.
Edited: 22 Oct 2013, 3:16 p.m.
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
Quote:
I'll need to make a 1.1.021 update for xcas.
Yep, yesterdays Xcas update fixed this problem and now it can also solve the 2 additional ODE types for which I've posted the solution method above  many thanks for this! :)
But I'm still a bit disappointed about Xcas' solving capabilities of 2nd order ODEs.
I've tested different kinds of (2nd order) ODEs and it seems that Xcas can only solve 3 types:
1) linear with constant coefficient: y''=a*y'+b*y+s(x) (a,b=const)
2) linear of the form we discussed above (since the last Xcas version)
3) independent of y: y''=f(x,y')
Especially for the 3rd type I wonder why you didn't also implement the type "independent of x", i.e. ODEs of the form y''=f(y,y') ?
This "free of x" type is also very easy to solve and the method is quite similar to the "free of y" type  the only diffenence is that in the substitution u=y' (which requires solving 2 firstorder ODEs) here u is a function of y (instead of x), and thus u' has to be built differently (u'=du/dy*dy/dx=u'(y)*y'(x)=u'(y)*u).
Here's the usual way such ODEs y''=f(y,y') are solved:
Given an ODE of the form y''=f(y,y'):
1) substitute y'>u, y''>u'*u
2) leads to u'*u=f(y,u) or u'=f(y,u)/u
3) deSolve(u'=f(y,u)/u,y,u) gives intermediate solution u=u(y)
4) backsubstitution leads to y'=u(y)
5) deSolve(y'=u(y),x,y) gives final solution y=y(x).
Implementing this method would be a big enhancement, because many ODEs are exactly of this type (BTW, also TI92+ and TINspire can solve this type!).
In my own ODE package for the old TI92 I even have 2 further 2nd order ODEs implemented (the LiouvilleDE y''=u(x)*y'+v(y)*y'^2 and 'exact' 2nd order ODEs), but these 2 are rather seldom used (and a bit more complicated to solve), so I think you won't be interested in them.
But this "free of x" type is indeed very important IMO ...
Franz
Edited: 24 Oct 2013, 4:19 p.m.
Posts: 1,278
Threads: 44
Joined: Jul 2007
So out of curiosity, what happens when you replace any of those constants with *any* slightly different numbers, or a variable on the nspire?
For example, deSolve(y''((a*y')/(x))+(b+((c)/(x^(2))))*y=x*e^(x) and y(((pi)/(6)))=0 and y(((pi)/(3)))=0,x,y)
TW
Edited: 22 Oct 2013, 12:18 a.m.
▼
Posts: 109
Threads: 38
Joined: Dec 2012
The NSpire comes up with y''=(x^3 * e^x  (b*x^2)*y+ a*x*y'  c*y)/x^2.
Substituting arbitrary numbers into a,b,c in the original example mostly results in an answer in the form of y''=
Changing initial conditions is ok...comes up with an answer for y
▼
Posts: 1,216
Threads: 75
Joined: Jun 2011
Quote:
Substituting arbitrary numbers into a,b,c in the original example mostly results in an answer in the form of y''=
It is only solvable if a^2+2a4c=0 (or if b=0), because only then it's the special type 2 (or type 3) that I've mentioned in my other posting above.
(b is arbitrary as long as it is constant!)
Franz
Edited: 22 Oct 2013, 10:33 a.m.
