Wow, here's a fascinating article on the visualization of pi (and some others) that is also beautiful and thought provoking. I never imagined this type of visualization...
Thanks,
Bruce
Visualization of pi


« Next Oldest  Next Newest »

▼
08162013, 12:43 AM
Wow, here's a fascinating article on the visualization of pi (and some others) that is also beautiful and thought provoking. I never imagined this type of visualization... Thanks, Bruce ▼
08162013, 04:22 AM
Serendipity... Just discovered the same page! :D ▼
08162013, 04:46 AM
Swiss psychologist Carl Jung would call it synchronicity.
08162013, 01:15 PM
I'm a big fan of pi and e (phi not so much, it's just (5^{1/2}+1)/2, after all), but wouldn't any irrational number (or set of irrational numbers) produce similar, or maybe even visually indistinguishable visualizations?
▼
08162013, 02:35 PM
Quote:It depends on how you convert the irrational number into integers to plot. If you use merely the digits of the decimal expansion, then I think you're right; when enough are plotted, they all look random. However, if instead of the digits of the decimal expansion, you use the partial quotients of the continued fraction expansion, then surprising patterns often emerge. The three numbers you mentioned are perfect examples. Using the HP Prime in CAS mode (type exactly as shown): convert(pi,confrac,'tt') > [3,7,15,1,292,1,1,1,2...] (no discernible pattern) convert(exp(1),confrac,'tt') > [2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1...] (a pattern!) convert((sqrt(5)+1)/2,confrac,'tt') > [1,1,1,1,1,1,1,1,1,1,1,1,...] (the simplest possible pattern of any irrational number!]
Joe Edited: 16 Aug 2013, 2:37 p.m.
08162013, 03:00 PM
▼
08162013, 07:37 PM
I'm fascinated by this. It means every hit song that has ever been written as well as every hit song THAT EVER WILL BE WRITTEN already exists as a sequence in Pi already. Same for great books, mathematical formulae, chemical equations, gene sequences that include the cures for all diseases, etc., etc., etc., ..... So everything we know and will ever know is right there waiting for us. I guess there must be an infinite number of numbers that this is true for. Maybe we would save time in making new discoveries by searching for sequences to try rather than trudging along using the old and tired scientific method. Maybe start by finding and removing everything we already know and then search the remainder. BTW, as far a storing files is concerned, even breaking a large file into a bunch of smaller segments would still result in a huge compression factor. I like the idea! So, is it possible one could write a specific "random" number generator that would produce any desired sequence of numbers based on a certain seed? That might be another way to store stuff and only need the equation and seed to recreate it. Maybe this is already being done. ▼
08162013, 08:02 PM
Quote: There is a lot of work on the use of genetic algorithms for various types of compression. These are somewhat along the lines of what you suggest. However,entropy theory puts a limit on how much you can compress data losslessly in the general case. So, with regards to your example, either the equation or the seed would need to be large enough that the average compression rate falls within the constraints defined by information theory.
08172013, 12:35 AM
Thanks for the stimulating posting! Thinking is fun!
Quote:Only the finite things. The infinite decimal expansion of pi does not contain within it the infinite decimal expansion of e, no matter how far out in pi you begin. However, this is not really an exception to what you said, because "everything we know and will ever know" doesn't include the infinite decimal expansion of e.
Quote:A delightful thought! Unfortunately, the scientific method has a builtin validity filter, whereas pi contains not only every finite truth, but also infinitely many more finite falsehoods, with no method for discerning between the two. Yes, the cure for cancer is encoded in pi, but so are infinitely many more bogus "cures" worded so cleverly that they sound convincing. Therefore the probability of finding the cure for cancer by searching pi for it is effectively zero. Since our knowledge of the infinite decimal expansion of pi is growing every year, and THAT portion contains a finite number of desired truths, undesired falsehoods, and lots of nonsense, it's very much like the Internet, the finite contents of which can, at any given moment, be represented by a single number... and IS represented by a single number... one gargantuan binary number... from which we extract some truths, some falsehoods, and lots of nonsense, every day. Disclaimer: The above text exists in pi, an infinite number of times. Therefore any correspondence between it and truth, falsehood, or nonsense, is completely accidental. ▼
08172013, 01:27 AM
Yes, I went off halfcocked on this one. A little more thought revealed all the dilemmas you mentionedmight just as well use a proper random number generator and hope you get lucky. But, as you said, it's been fun thinking about it anyway.
08172013, 04:16 AM
Quote: While Pi is highly suspected to be a normal number, it's not even known if its digit form a disjunctive sequence. You might use Champernowne constant instead.
Kind regards
08182013, 11:05 PM
Buying enough typewriter (or, I suppose, word processors) and training enough monkeys, we could get there too, right? Reminds me of that old science fiction story in which the monkey got close.... From this session interdict
08172013, 05:00 PM
The "spirograph" pattern emerges from the arrangement of the integers around the circumference of a circle. The outer band includes the paths of all adjacencies. The next band contains all but the adjacencies of order 1, and so forth. The closer to the center, the lower the density because there are fewer paths. Why are there five bands? 
Possibly Related Threads...  
Thread  Author  Replies  Views  Last Post  
[OT] Mathematica free for Raspberry PI  BruceH  32  6,489 
11232013, 05:24 AM Last Post: Nick_S 

Computing pi with the PC1300S  Kiyoshi Akima  0  888 
11172013, 12:24 AM Last Post: Kiyoshi Akima 

Calculating Pi  LHH  9  2,326 
09272013, 10:50 PM Last Post: Gerson W. Barbosa 

OT: Happy Pi Day!  Eddie W. Shore  13  2,856 
03222013, 10:44 AM Last Post: Les Koller 

Totally OT ... Pi Day for my car  Maximilian Hohmann  18  3,758 
03102013, 01:15 PM Last Post: chris smith 

[WP34S] A funny bug in Pi (prod)  Eduardo Duenez  3  1,148 
01282013, 03:41 AM Last Post: Walter B 

28S Pi Functionality  Matt Fegenbush  3  1,237 
10172012, 02:15 AM Last Post: Nick_S 

e^pi  pi + 9/10^4 + 1/(10^4*ln(2) + sqrt(10)/6)^2  Gerson W. Barbosa  47  9,436 
08082012, 10:58 PM Last Post: Les Koller 

[OT] 355/113 and pi  David Hayden  28  5,558 
07272012, 10:01 AM Last Post: Egan Ford 

Calculating Pi  Andrew Davie  6  1,756 
07062012, 03:30 AM Last Post: Gjermund Skailand 