Obtaining More Decimal Digits (50g)
|
|
« Next Oldest | Next Newest »
|
▼
08-30-2012, 12:07 PM
▼
09-01-2012, 05:12 AM
Hi Eddy, Interesting. Here is a program wich calcultate n digits of PI with the same idea using BMP (Plouffe) formula
« The idea is that if you expand Plouffe formula :
'(1/(16^k))*((((4/((8*k)+1))-(2/((8*k)+4)))-(1/((8*k)+5)))-(1/((8*k)+6)))' EVAL EXPAND 500 nPi gives the 500 first décimal of PI in ~ 3mn on a real calc (few seconds with emu48)(the last 3 digits are wrong) As you can see here, the BMP formula is very interesting to calculate the n'th dgit of PI in hexadecimal : Calculate the 1 million PI hexa digit in UserRpl
Edited: 1 Sept 2012, 5:55 a.m. ▼
09-13-2012, 08:34 AM
I kind of get stuck at matching 20 digits for pi. 24 nPi returns 314159265358979323846 1556 30 nPi returns 314159265358979323846 1565762641 36 nPi returns 314159265358979323846 1565762653862973 Eddie Sorry for the late reply ▼
09-13-2012, 05:38 PM
Hi You must be in 'exact mode' (uncheck APPROX in CAS setup) and _no decimal point_ in the numbers used for calculation in the program 36 nPI 3141592653589793238462643383279502869 2500 nPI
3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456027509 Edited: 13 Sept 2012, 5:57 p.m. |