Thanks all of you for your participation and interesting solutions. Most of them supersede mine, as they are shorter, faster and accept a wider range of operands, exactly what I expected them to be. Here are my solutions:
00 { 77-Byte Prgm }This will accept two numbers in the range [1000..9999] and give their product.
01>LBL "MLTA"
02 0
03 0.099
04 Rv
05>LBL 00
06 STO IND ST T
07 RCL+ ST Y
08 ISG ST T
09 GTO 00
10 RCL ST Z
11 CLA
12 AIP
13 XEQ 02
14 XEQ 02
15 RCL IND ST Y
16 RCL IND ST Y
17 1.1
18 Rv
19>LBL 01
20 RCL+ ST Y
21 ISG ST T
22 GTO 01
23 RTN
24>LBL 02
25 ATOX
26 RCL+ ST X
27 LASTX
28 -3
29 ROTXY
30 +
31 ATOX
32 +
33 528
34 -
35 END
Examples:
1234 ENTER 5678 XEQ MLTA --> 7,006,652Here is an equivalent QBASIC program:9999 ENTER XEQ MLTA --> 99,980,001
CLS
DEFINT A-D, I
DEFDBL S
DIM M(100)
INPUT A, B
C = VAL(MID$(STR$(B), 2, 2)): REM C = B \ 100
D = VAL(RIGHT$(STR$(B), 2)): REM D = B - 100 * C
S = 0
FOR I = 0 TO 99
M(I) = S
S = S + A
NEXT I
S = M(D)
FOR I = 1 TO 100
S = S + M(C)
NEXT I
PRINT S
END? 1234,5678
7006652
The next program is an implementation of the Russian Peasant Multiplication Method:
00 { 52-Byte Prgm }
01>LBL "MLTB"
02 0
03 STO 00
04 Rv
05>LBL 00
06 0
07 BIT?
08 XEQ 01
09 BASE+
10 X=0?
11 GTO 02
12 1
13 ROTXY
14 X<>Y
15 -1
16 ROTXY
17 X<>Y
18 GTO 00
19>LBL 01
20 NOT
21 BASE+
22 X<>Y
23 STO+ 00
24 X<>Y
25 0
26 RTN
27>LBL 02
28 RCL 00
29 .END.
This will give the product of any two positive integer numbers, as long as the result doesn't exceed 236-1.
Examples:
12 ENTER 3456789 XEQ MLTB --> 41,481,4681234 ENTER 5678 XEQ MLTB --> 7,006,652
262143 ENTER XEQ MLTB --> 68,718,952,449
Here is a variation of the first program, in case one of the operands is allowed to be entered as two separate two-digit numbers, as proposed somewhere else in this thread:
00 { 47-Byte Prgm }
01>LBL "MLTC"
02 STO 01
03 0
04 STO 00
05 CLX
06 2.099
07 Rv
08>LBL 00
09 RCL+ 01
10 STO IND ST T
11 ISG ST T
12 GTO 00
13 RCL IND ST Z
14 RCL IND ST Z
15 1.1
16 Rv
17>LBL 01
18 RCL+ ST Y
19 ISG ST T
20 GTO 01
21 END
Examples:
12 ENTER 34 ENTER 5678 XEQ MLTC --> 7,006,65299 ENTER ENTER 9999 XEQ MLTC --> 99,980,001
Gerson.
P.S.: Programs #1 and #3 require the allocation of 100 numbered registers:
Shift MODES \/ SIZE 0100
Edited: 27 Feb 2012, 5:39 p.m.