(O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Printable Version +- HP Forums ( https://archived.hpcalc.org/museumforum)+-- Forum: HP Museum Forums ( https://archived.hpcalc.org/museumforum/forum-1.html)+--- Forum: Old HP Forum Archives ( https://archived.hpcalc.org/museumforum/forum-2.html)+--- Thread: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) ( /thread-153373.html) |

(O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Gerson W. Barbosa - 07-22-2009
Re: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Paul Dale - 07-22-2009
Very nice.
- Pauli
Re: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Gerson W. Barbosa - 07-22-2009
Thanks! It took me only five minutes or so to find this one on the 12C:
3.141592654
Gerson.
Re: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Mark Edmonds - 07-22-2009
Five seconds on a 48G gave me this: 1146408/364913 The old regular 22/7 is a bit easier to remember.
Mark
Re: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Paul Dale - 07-22-2009
But neither of them use the digits 1 through 9 in order :-)
- Pauli
Re: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Gerson W. Barbosa - 07-22-2009
Archimedes' upper bound for Pi is better because it was obtained by reasoning rather than sheer luck. MathWord has plenty of Pi approximations to choose from: http://mathworld.wolfram.com/PiApproximations.html Regards, Gerson. ------- P. S.: The 33s gives instantly this even better and still easy to remember approximation:-)
355
Re: (O.T.) Happy Pi Approximation Day! 'e*XROOT(12,e^(-3*4)+5.6789)' (N.T.) - Thomas Radtke - 07-23-2009
Quote:HP-35 users knew that one before (mentioned in its manual) ;^). |