This Mechanical Engineering problem can be solved with the use of the HP35s programs below:

It also demonstrates the use of indirect addressing of the HP35s. It overcomes the use of several variables with clever referencing.Schematic ::

HP35s Program Four Slings Lift CalculationFind the length of slings, the vertical load at each point, the tension in the slings and its angle to the vertical?

Given: A load of W=150t, height of the hook above the flat rectangular (10x20m) plate is H=30m

CG location from reference point 3 is 4m by 5m.

Keystrokes Display Description

XEQ R ENTER LOAD LIFTED Enter Load at CG

150 R/S W?

HOOK HEIGHT Height from plane 1234 to hook

30 R/S H?

DIST 3 TO 1 Using Pt 3 as reference distance for edge 1 3 A

10 R/S A?

DIST 3 TO 4 Using Pt 3 as reference distance for edge 3 4

20 R/S B?CG DIST PT3--4 Using Pt 3 as reference distance for CG along axis 3 4

5 R/S C?

CG DIST PT3-1 Using Pt 3 as reference distance for CG along axis 3 1

4 R/S D? LIFT PT 1 TO 4 Enter a number between 1 to 4 for lift point calculations

4 R/S P? Give me the answer for lift point 4

[LOAD, LGTH] R1 Location of values when displayed : row 1

[TENS, ANGL] R2 Location of values when displayed : row 2

[ 22.50, 33.78 ] Load at point vertical and length of slings on stack y

[ 25.30, 27.36 ] Tension in sling and angle of slings to vertical on stack xThe new code listing is as follows:

Line Instruction Comments

R001 LBL R

R002 SF10

R003 LOAD LIFTED Enter load being lifted

R004 PSE

R005 CF 10

R006 INPUT W

R007 SF 10

R008 HOOK HEIGHT Enter the vertical hook height

R009 PSE

R010 CF 10

R011 INPUT H

R012 SF 10

R013 DIST 3 TO 1 Distance in plan from 3 to 1

R014 PSE

R015 CF 10

R016 INPUT A

R017 SF 10

R018 DIST 3 TO 4 Distance in plan from 3 to 4

R019 PSE

R020 CF 10

R021 INPUT B

R022 SF 10

R023 CG DIST PT3---4 CG distance from point 3 direction 4

R024 PSE

R025 CF 10

R026 INPUT C

R027 SF 10

R028 CG DIST PT3-1 CG distance from point 3 direction 1

R029 PSE

R030 CF 10

R031 INPUT D

R032 1

R033 STO I

R034 eqn Wx(B-C)xD÷(AxB)

R035 STO (I) Store load value at point 1

R036 2

R037 STO I

R038 eqn WxCxD÷(AxB)

R039 STO (I) Store load value at point 2

R040 3

R041 STO I

R042 eqn Wx(B-C)x(A-D)÷(AxB)

R043 STO (I) Store load value at point 3

R044 4

R045 STO I

R046 eqn Wx(A-D)xC÷(AxB)

R047 STO (I) Store load value at point 4

R048 11

R049 STO I

R050 eqn SQRT(C^2+(A-D)^2+H^2)

R051 STO (I) Store length value at point 1 : Memory Location 11

R052 12

R053 STO I

R054 eqn SQRT((B-C)^2+(A-D)^2+H^2)

R055 STO (I) Store length value at point 2 : Memory Location 12

R056 13

R057 STO I

R058 eqn SQRT(C^2+D^2+H^2)

R059 STO (I) Store length value at point 3 : Memory Location 13

R060 14

R061 STO I

R062 eqn SQRT((B-C)^2+D^2+H^2)

R063 STO (I) Store length value at point 4 : Memory Location 14

R064 4 Number of legs, loops = 4

R065 STO N

R066 RCL N Routine to store tension & angle to vertical in indirect addressing

R067 1

R068 -

R069 N Eg:- Loop 1 , N=4

R070 STO J

R071 RCL (J)

R072 N+10

R073 STO J

R074 RCL (J)

R075 REGZ

R076 x

R077 H

R078 ÷

R079 eqn 30+N

R080 STO I

R081 REGY

R082 STO (I) Stores Tension at location 31, 32, 33 & 34

R083 10+N

R084 STO J

R085 RCL (J)

R086 H

R087 x<>y Swap x with y register

R088 ÷

R089 ACOS

R090 eqn 40+N

R091 STO I

R092 REGY

R093 STO (I) Stores Angle at location 41, 42, 43 & 44

R094 DSE N Decrease counter

R095 GTO R066 Loop back

R096 SF10

R097 eqn LIFT PT 1 TO 4

R098 PSE

R099 CF 10

R100 INPUT P

R101 SF10

R102 eqn [LOAD, LGTH] R1 Display load, length in array

R103 PSE

R104 eqn [TENS, ANGL] R2 Display tension and angle of slings in array

R105 PSE

R106 CF 10

R107 P+30

R108 STO J

R109 RCL (J)

R110 P+40

R111 STO J

R112 RCL (J)

R113 [REGZ, REGX]

R114 STO X

R115 P

R116 STO J

R117 RCL (J)

R118 P+10

R119 STO J

R120 RCL (J)

R121 [REGZ, REGX] Display load, length in array : Register Y

R122 RCL X Display tension and angle of slings in array : Register X

R123 STOPLN=707 Checksum=E01C (This might be meaningless apparently)

Compiled by Jean-Marc Biram, Copyright © 2007 Free Software Foundation

Distributed under the version 3, GNU general public license

12-13-2013, 02:49 AM

12-16-2013, 08:17 AM

12-16-2013, 07:21 PM