
S. F. Anderson

J. G. Earle

R. E. Goldschmidt

D. M. Powers

The IBM System/360 Model 91:
Floating-point Execution Unit

Abstract: The principal requirement for the Model 91 floating-point execution unit was that it be designed to support the instruction-
issuing rate of the processor. The chosen solution was to develop separate, instruction-oriented algorithms for the add, multiply, and
divide functions. Linked together by the floating-point instruction unit, the multiple execution units provide concurrent instruction
execution at the burst rate of one instruction per cycle.

Introduction

The instruction unit of the IBM System/360 Model 91 is
designed to issue instructions at a burst rate of one in-
struction per cycle, and the performance of floating-point
execution must support this rate. However, conventional
execution unit designs cannot support this level of per-
formance. The Model 91 Floating-point Execution Unit
departs from convention and is instruction-oriented to
provide fast, concurrent instruction execution.

The objectives of this paper are to describe the floating-
point execution unit. Particular attention is given to the
design of the instruction-oriented units to reveal the tech-
niques which were employed to match the burst instruction
rate of one instruction per cycle. These objectives can
best be accomplished by dividing the paper into four
sections-General design considerations, Floating-point
terminology, Floating-point add unit, and Floating-point
multiplyldivide unit.

The first section explains how the desire for concurrent
execution of instructions has led to the design of multiple
execution units linked together by the floating-point in-
struction unit. Then the concept of instruction-oriented
units is discussed, and its impact on the multiplicity of
units is pointed out. It is shown that, with the instruction-
oriented units as building blocks and the floating-point
instruction unit as the “cement,” an execution unit evolves
which rises to the desired performance level.

The section on floating-point terminology briefly reviews
the System/360 data formats and floating-point definitions.

34 The next two sections describe the design of the instruc-

tion-oriented units. The first of these is the floating-point
add unit description which is divided into two sub-sections,
Algorithm and Implementation. In the algorithm sub-
section, the complete algorithm for execution of a floating
add/subtract is considered with emphasis on the dif-
ficulties inherent in the implementation. Since the add
unit is instruction-oriented, (i.e., only add-type instructions
must be considered), it is possible to overcome the in-
herent difficulties by merging the several steps of the
algorithm into three hardware areas. The implementation
section describes these three areas, namely, characteristic
comparison and pre-shifting, fraction adder, and post-
normalization.

The last section describes the floating-point multiply/di-
vide unit. This section describes the multiply algorithm and
its implementation first, and then the divide algorithm
and its implementation. The emphasis of the multiply
algorithm sub-section is on recoding the multiplier and
the usefulness of carry-save adders. In the implementation
sub-section the emphasis is on the iterative hardware which
is the heart of the multiply operation. An arrangement of
carry-save adders is shown which, when pipelined by add-
ing temporary storage platforms, has an iteration repetition
rate of fifty Mc/sec. The divide algorithm is described next
with emphasis on using multiplication, instead of sub-
traction, as the iterative operator. The discussion of divide
implementation shows how the existing multiply hard-
ware, plus a small amount of additional circuitry, is used
to perform the divide operation.

IBM JOURNAL JANUARY 1967

Figure 1 Floating-point execution unit capable of concurrent execution.

General design considerations

The programs considered “typical” by the user of high-
performance computers are floating-point oriented. There-
fore, the prime concern in designing the floating-point
execution unit is to develop an overall organization which
will match the performance of the instruction unit. How-
ever, the execution time of floating-point instructions is
long compared with the issuing rate of these instructions by
the instruction unit. The most obvious approach is to
apply a faster technology and with special design tech-
niques reduce the execution time for floating-point. But
a study of many “typical” floating point programs re-
vealed that the execution time per instruction would have
to be 1 to 2 cycles in order to match the performance3 of the
instruction unit.* Conventional execution unit design,
even with state-of-the-art algorithms, will not provide
these execution times.

Another approach considered was to provide execution
concurrency among instructions; this obviously would re-
quire two complete floating-point execution units.+ An
attendant requirement would be a floating-point instruc-
tion unit. This unit is necessary to sequence the operands
from storage to the proper execution unit; it must buffer
the instructions and assign each instruction to a non-busy
execution unit. Also, since the execution time is not the
same for all instructions the possibility now exists for
”_

* Even though the burst rate of the instruction unit is one instruction
per cycle, it is not necessary to execute at the same rate.

t Since two complete execution units me necessary for Concurrent
execution, the cost-performance factor is important. Analysis showed
that execution times of three cycles for add and seven cycles for multi-
ply were reasonable expectations.

out-of-sequence execution, and the floating-point in-
struction must insure that executing out of sequence
does not produce incorrect results.* The organization
for an execution unit capable of concurrent execution is
shown in Fig. 1. Buffering and sequence control of all
instructions, storage operands, and floating-point accu-
mulators are the responsibility of the floating-point execu-
tion unit. Each of the execution units is capable of execut-
ing all floating-point instructions.

One might be led to believe that this organization is a
suitable solution in itself. If multiply can be executed
in seven cycles and two multiplies are executed simul-
taneously, then the effective execution time is 3.5 cycles.
Similarly, for add the execution time would go from three
cycles to 1.5 cycles. However, the operating delay of the
floating-point instruction unit must be considered, and it
is not always possible to execute concurrently because of
the dependence among instructions. When these problems
are considered the effective execution time is close to three
cycles per instruction, which is not sufficient. A third
execution unit would not help because the complexity of
the floating-point instruction unit increases, and the
amount of hardware becomes prohibitive.

The next solution to be considered was to improve the
execution time of each instruction by employing faster
algorithms in the design of each execution unit. Obviously
this would increase the hardware, but since the circuit

* Dependence among instructions must be controlled. If instruction
n + 1 is dependent on the result of instruction n instruction n + 1
must not be allowed to start until instruction n is’completed. 35

MODEL 91 FLOATING-POINT EXECUTION

Table 1 Floating-point instructions executed by floating-point execution unit.

Condition Arithmetic
Type Znstruction code Floating-point exceptions* unit

RR-RX Load (S/L) NO FLIU
RR Load and Test (S/L) YES FLIU
RX Store (S/L) NO FLIU
RR Load Complement (S/L) YES ADD
RR Load Positive (S/L) YES ADD
RR Load Negative (S/L) YES ADD
RR-RX Add Normalized (S/L) YES U, E, LS ADD
RR-RX Add Unnormalized (S/L) YES E, LS ADD
RR-RX Subtract Normalized (S/L) YES U, E, LS ADD
RR-RX Subtract Unnormalized (S/L) YES E, LS ADD
RR-RX Compare (S/L) YES ADD
RR Halve (S/L) NO ADD
RR-RX Multiply NO U, E M /D
RR-RX Divide NO U, E, FK M/D

Exceptions :
U-Exponent-underflow exception

LS-Significance exception
E-Exponent-overflow exception

FK-Floating Point Divide Exception

delay is a function not only of the circuit speed but also of
the number of loads on the input net and the length of
the interconnection wiring, more hardware may not make
the unit f a ~ t e r . ~ These two factors-the desire for faster
execution of each instruction and the size sensitivity of the
circuit delay, have produced a concept which is unique to
the organization of floating-point execution units, and
which was adopted for the Model 91 : the concept of using
separate execution units for different instruction types.
Faster execution of each instruction can be achieved if
the conventional execution unit is separated into arithme-
tic units designed to execute a subset of the floating-point
instructions instead of the entire set. This conclusion may
not be obvious, but a unit designed exclusively for a class
of similar instructions can execute those instructions faster
than a unit designed to accommodate all floating-point
instructions. The control sequences are shorter and less
complex; the data flow path has fewer logic levels and re-
requires less hardware because the designer has more free-
dom in combining serial operations to eliminate circuit
levels; the circuit delay per level is faster because less hard-
ware is required in the smaller, autonomous units. To
implement the concept in the Model 91, the floating-point
instruction set was separated into two subsets: add and
multiply/divide. Table 1 shows a list of the instructions
and identifies the unit in which each instruction is executed.
With this separation, an add unit which executed all add
class instructions in two cycles, and a multiply/divide unit
which executed multiply in six cycles and divide in eighteen
cycles, were designed.

36 The use of this concept somewhat changes the character

of concurrent execution. It is possible to have concurrent
execution with one execution unit-Le., two arithmetic
units, add and multiply/divide. The performance is not
quite as good as that attainable using two execution units,
but less hardware is required for the implementation.
Therefore, more arithmetic units can be added to improve
the performance. First, two add units and two multiply/di-
vide units were considered. But the floating-point instruc-
tion unit can assign only one instruction per cycle.
Therefore, since an add operation is two cycles long, two
add units could be replaced by one add unit if a new add
class instruction could be started every cycle. This would
introduce still another example of concurrent execution:
concurrent execution within an arithmetic unit.

Such concurrency within a unit is facilitated by the
technique of pipelining. If a section of combinatorial logic,
such as the logic to execute an add, could be designed with
equal delay in all parallel paths through the logic, the
rate at which new inputs could enter this section of logic
would be independent of the total delay through the logic.
However, delay is never equal; skew is always present and
the interval between input signals must be greater than the
total skew of the logic section. But temporary storage plat-
forms can be inserted which will separate the section of
combinatorial logic into smaller synchronous stages. Now
the total skew has been divided into smaller pieces; only the
skew between stages has to be considered. The interval
between inputs has decreased and now depends on the
skew between temporary storage platforms. Essentially
the temporary storage platform is used to separate one
complete job, such as an add, into several pieces; then

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

several jobs can be executed simultaneously. Thus, inputs
can be applied at a predetermined rate and once the pipe-
line is full the outputs will match this rate.

The technique of pipelining does have practical limits,
and these limits differ for each application. In general
the rate at which new inputs can be applied is limited by
the logic preceding the pipeline (e.g., add is limited to one
instruction per cycle by the floating-point instruction unit)
or by the rate at which outputs can be accepted. Also,
both the rate of new inputs and the length of the pipeline
are limited by dependencies among stages of the pipeline
or between the output and successive inputs (e.g., the
output of one add can become an input for the next).

The add unit requires two cycles for execution and is
limited to one new input per cycle. Thus pipelining allows
two instructions to be in execution concurrently, thereby
increasing the efficiency with a small increase in hardware.

Further study of pipelining techniques would indicate
that a three-cycle multiply and a twelve-cycle divide are
possible. Here the technique of pipelining is used to speed
up the iterative section of the multiply which is critical to
multiply/divide execution. (This is discussed in detail in
the section on the multiply/divide unit.)

The execution unit would consist at this point of a
floating-point instruction unit, an add unit which could
start an instruction every cycle, and a multiply/divide
unit which would execute multiply in three cycles and
divide in twelve cycles. However the performance still
would not match the instruction unit. The execution
times would be adequate but the units would spend con-
siderable time waiting for operands. Therefore, instead of
duplicating the arithmetic unit (which is expensive) extra
input buffer registers have been added to collect the
operands and necessary instruction control information.
When both operands are available, the control information
is processed and a request made to use an arithmetic unit.
These registers are referred to as "reservation stations."
They can be and are treated as independent units.

The final organization is shown in Fig. 2. It consists of
three parts: the floating-point instruction unit; the floating-
point add unit; and the floating-point multiply/divide unit.
Another paper in this series3 explains the floating-point
instruction unit in detail. The problems involved and both
the considered solutions and the implemented solutions
are discussed. The floating-point add unit has three reser-
vation stations and, as stated above, is treated as three
separate add units, Al, A2 and A3. The floating-point
multiply/divide unit has two reservation stations, M/D1
and M/D2. The last two sections of this paper describe
the design of these two units in detail.

Floating-point terminology

The reader is assumed to be familiar with System/360
architecture and terminology.' However, the floating-point

TO
VIA

DATA

ST(
s1
BI

i
A[

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I

I
I
L

)RAGE
rORE
JFFERS TO FX

FR3M
STORAGE

INSTR UNIT t "1 _""" 1""

I
FLOATING.

POINT
OP STACK

(FLOS)
FLOATING-

BUFFERS CONTROLS
(F W

EXECUTION UNITS

CONTROLS

RES STAT 1 RES STAT 2 RES STAT 3

A1 A 2 A3

TWO-STAGE
FLOATING-

POINT

"""

PIPELINE

RESULT .
COMMON R

PT

ET%: RES STAT 1 RES STAT 2 I

ITERATION
MULTIPLY

I PROPAGATE

6 RESULT

1
BUS

Figure 2 Overall organization of floating-point unit.

data format and terminology will be briefly reviewed here.
Floating-point data occupy a fixed-length format, which

may be either a full-word short format or a double-word
format :

Short Floating-point Binary Format

Sign Characteristic Fraction

0 1 _ _ _ _ _ 7 8 _ _ _ _ 31

Long Floating-point Binary Format

Sign Characteristic Fraction

0 1 _ _ _ _ 7 8 _ _ _ _ _ 63

The first bit(s) in either format is (are) the sign bit(s). The
subsequent seven bit positions are occupied by the charac- 37

MODEL 91 FLOATING-POINT EXECUTION

38

FLR BUS COMMON DATA BUS

CHARACTERISTIC (8 BITS) FLB BUS

CHARACTERISTIC COMPARISON
AND PRE4HIFTING

\ FRACTION
ADDER /

FRACTION ADDER

I R E S V L T I
POST. NORMALIZATION

CHARACTERISTIC 7- + COMMON RESULT BUS

Figure 3 Floating-point add data flow.

teristic. The fraction consists of six hexadecimal digits
for the short format or 14 hexadecimal digits for the long.

The radix point of the fraction is assumed to be im-
mediately to the left of the high-order fraction digit. To
provide the proper magnitude for the floating-point num-
ber, the fraction is considered to be multiplied by a power
of 16. The characteristic portion, bits 1-7 of both floating-
point formats, indicates this power. The characteristic is
treated as an excess 64 number with a range from -64
through "63 corresponding to the binary expression of
the values 0-127.

Both positive and negative quantities have a true frac-
tion, the difference in sign being indicated by the sign
bit. The number is positive or negative accordingly as the
sign bit is zero or one.

A normalized floating-point number has a non-zero
high-order hexadecimal fraction digit. To preserve maxi-
mum precision in subsequent operation, addition, sub-
traction, multiplication, and division are performed with
normalized results. (Addition and subtraction may also
be programmed to be performed with unnormalized re-
sults. The operands for any floating-point operation can
be either normalized or unnormalized.)

Floating-point add unit

The challenge in the design of the add unit was to minimize
the number of logical levels in the longest delay path.
However, the sequence of operations necessary for the
execution of a floating-point add impedes the design goal.

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

Consider the following operations:

(a) Since the radix point must be aligned before an add
can proceed, the characteristics of the two operands
must be compared and the difference between them
established.

(b) This difference must be decoded into the shift amount,
and the fraction with the smaller characteristic shifted
right a sufficient number of positions to make the
characteristics equal.

(c) Since subtraction is to be performed by forming the
two's complement of one of the fractions and then
adding the two fractions in the fraction adder, one of
the fractions must pass through true/complement logic.

(d) The two operand fractions are added in a parallel
adder. The carries must propagate from the low order
end to the high order end.

(e) Because of subtraction, the output must provide for
both the true sum and the complement sum, depending
on the high-order carry.

(f) If the system architecture calls for left justification or
normalized operation, the result out of the adder must
be checked for high-order zeros and shifted left to
remove these zeros.

(g) The characteristic must be reduced by the amount of
left shift necessary to normalize the resultant fraction.

(h) The resultant operand must be stored in the proper
accumulator.
The above sequence of operations implies a series of

sequential execution stages, each of which is dependent on
the output of the previous stage. The problem then, is to
arrange, change and merge these operations to provide
fast, efficient execution for a floating-point add.

None of the steps can be eliminated. Each step is re-
quired in order to execute add; but the steps can be merged
so that the interface between them is eliminated,* and
each step can be changed to provide only the necessary
information to the next stage, For example, the long data
format consists of 14 hexadecimal digits; therefore any
difference between the two characteristics which is greater
than 14 will result in an all zero fraction. This means that
the characteristic difference adder need not generate a sum
for the high-order three bits. Instead, if the difference is
greater than 14, a shift of 15 is forced. As a result, the
characteristic difference adder is faster and less expensive.

The add unit algorithm is separated into three parts:
characteristic comparison and pre-shifting, fraction adder,
and post-normalization (Fig. 3). The first section, the
characteristic comparison and pre-shifting operation,
merges the first three operations from the sequence given
above; the second section-the fraction adder-merges
the next two operations; the final section-post normaliza-

*Levels are used to encode the output of one step, which is subse-

these levels.
quently decoded in the next step. Merging the two steps will eliminate

___-

CA > c, c , - 1 1 1 1 1 0 0

1 1 1 1 1 0 0 c,
0 0 1 0 1 1 1 c,

-

1 HOT ONE

(RESULT IS TRUE) 1 1 1 0 1 1 1 1 C,- C,

C,=l 1 0 1 0 0 0

(RESULT
IS COMPLEMENT) 0 1 1 0 1 1 0 0

1 HOT ONE

COMP. RESULT 0 0 1 0 0 1 1

MUST ADD HOT ONE 1
0 0 1 0 1 0 0 c,-c,

-
C, c C, (END-AROUND CARRY)

1 1 0 1 0 0 0 c,
0 0 0 0 0 1 1 c,

(NO CARRY) 0 1 1 0 1 0 1 1

COMPLEMENT 0 0 1 0 1 0 0 CORRECT RESULT
"""~"~"""""~""~""~"~"" -"-

Figure 4 Examples of exponent arithmetic.

tion-merges the final three operations. The hardware
implementation of each of these three sections is discussed
below.

Implementation

Characteristic comparison and pre-shifting

The first stage of execution for all two-operand instructions
(floating-point add, subtract, and compare) is to compare
the characteristics and establish the magnitude of the
difference between them. The characteristic (C,) of one
operand is always subtracted from the characteristic
(C,) of the other operand (CA - C,). Characteristic B
is always complemented as it is gated in at the reservation
station.

If the output of the characteristic difference adder is
the true sum or the complement of the true sum, the
output can be decoded directly at the pre-shifter. But the
adder always subtracts CB from CA and if CB > C, the
sum would be negative. Therefore, to eliminate the pos-
sibility of having to add a 1 in the low order position
and complement when C, is greater than CA, an "end-
around-carry'' adder is used. This is shown by the example
in Fig. 4.

The characteristic comparison can result in two states-
CA > CB or CB > CA. If CA > C,, there is a carry out
of the high order position of the characteristic differ-
ence adder, and the carry is used to gate the fraction of
operand B to the pre-shifter. The true sum output of the
characteristic difference adder is the amount that the
fraction must be shifted right to make the characteristics 39

MODEL 91 FLOATING-POINT EXECUTION

INPUTS DIGITS

0 0 0 0 0 0
1 1 1 1 1 1

2 2 2 2 2
3 3 3 3

4 4 4
5 5

6 FIRST LEVEL
SHF RIGHT 0 SECOND LEVEL
SHF RIGHT 1 SHF RIGHT 0
SHF RIGHT 2 SHF RIGHT 4
SHF RIGHT 3 SHF RIGHT 8

SHF RIGHT12

""

"- "" - - - - - -" -
"

Figure 5 Digit pre-shifter.

equal. If C, > CA, there is no carry out of the high order
position of the characteristic difference adder, and the
absence of a carry is used to gate the fraction of operand
A to the pre-shifter. In this case the complement of the
sum output of the characteristic difference adder is the
amount that the fraction must be shifted right to make the
characteristics equal. In both cases the second operand
fraction (the one with the larger characteristic) is gated to
the true-complement input of the fraction adder.

The characteristic of the unshifted fraction becomes the
resultant characteristic. It is gated to the characteristic-
update adder, and after updating, if necessary, it is gated
to the accumulator specified by the instruction.

The output of the characteristic difference adder is
decoded by the pre-shifter and the proper fraction shifted
right the necessary number of positions. The pre-shifter
is a parallel digit-shifter which shifts each of the 14 digits
right any amount from zero to fifteen. The decode of the
shift amount is designed into each level, thereby eliminating
serial logic levels for decoding.

The pre-shifter consists of two circuit levels. The first
level shifts a digit right by 0, 1, 2 or 3 digit positions. The
second level shifts a digit right by 0, 4, 8, or 12 digit
positions. Thus, by the proper combination of these
amounts any right digit shift between and including 0 and
15 can be executed. Figure 5 shows an example of the
pre-shifter.

The un-shifted fraction is gated to the true/complement
40 gates of the adder. Here the fraction is gated unchanged

2
3
4
5
6
7

9
8

10

2
3
4
5
6
7
8
9
10
11

2
3
4

6
5

7
8
9
10

12
11

if the effective operation is ADD and complemented if the
effective operation is SUBTRACT. The true/complement
gating is overlapped with the pre-shifter on a time basis.
The output of both the true/complement logic and the
pre-shifter are the inputs to the fraction adder.

Fraction adder

Most of the time required for binary adders is carry prop-
agation time. Two operands must be combined and the
carries allowed to ripple from right (low order) to left
(high order). The usual method of finding the sum is to
combine the half sum* of bit n (higher order) with the
carry from bit n - 1 (S, = A , Q Bn v en).+ The carry
(C,) into bit position n is also a three term expression
which includes the carry into bit position n - 1

If the carry term is rearranged to read

two new terms can be defined which separate the carry
into two parts-generated carry, and propagated carry.
The generated carry (Gn-l) is defined as An-1. Bn-l, and
the carry propagate function (often abbreviated to simply
propagate or PnJ is defined as An-1 V Bn-l. Now the

i The two operand fractions are designated as A, B and the bits as
* The half sum is the exclusive OR of the two input bits, (A, V B").

An, Bn, An-1, Bn-I, etc. GI i s the carry into bit position n, which is
the carry out from bit n - 1.

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

carry expression can be rewritten as:’”

e, = G,-1 v Pn-lCn-l
C,, = G,-1 V Pn-lGn-1 V Pn-lPn-zCn-z

C,, = G,-l V Pn-lGn-l V Pn--lPn-zGz-z

v Pn-1Pn4Pn-3Cn-3

The expansion can continue as far as one desires and one
could conceive of C, being generated by one large OR

block preceded by several AND blocks (in fact n AND

blocks-one for each stage). But it is obvious that the
limiting factor would be the circuit fan-in. Only a limited
number of circuit stages can be connected together in
this manner. This technique is defined as carry look-ahead,
and by cascading different levels of look-ahead the tech-
nique can be made to fit the circuit fan-in, fan-out limita-
tions.

For example, assume that four bits can be arranged in
this manner, and that each four bits form a “group.” The
adder is now divided into groups and the carries and
propagates can be arranged for carry look-ahead between
groups just as they were for look-ahead between bits. It
is possible to carry the concept even further and define a
section as consisting of one or more groups. Now the
adder has three levels of carry look-ahead: the bit level
of look-ahead, the group level, and the section level.

The fraction adder of the floating-point add unit is a
carry look-ahead adder. A group is made up of four bits

’ (one digit) and two groups form a section. Since it must
be capable of adding 56 bits, the fraction adder consists
of seven sections and 14 groups. Each pair of input bits
generate the three bit functions: half-sum (A v B), bit
carry generate (A . B) and bit propagate (A V B). These
functions are combined to form the group generate and
propagate which in turn are combined to form the section
generate and propagate. A typical group is shown in
Fig. 6 and the group and section look-ahead are shown in
Fig. 7.

The high-order sum consists of nine bits to include the
end-around carry for subtraction and the overflow bit
for addition. The end-around carry is needed for subtrac-
tion because the fraction which is complemented may not
be the subtrahend. This is illustrated by the example given
in the description of the characteristic comparison. If the
effective sign of the instruction is minus (the exclusive OR
of the sign of the two fractions and the instruction is the
effective sign) the effective operation is subtract. Also,
the high-order bit (ninth bit of the high order section) is
set to a one, thus conditioning it for an end-around-carry.
If there is no end-around-carry when the effective sign
is minus the adder output is complemented.

Post-normalization
Normalization or post-shifting takes place when the inter-
mediate arithmetic result out of the adder is changed to
the final result. The output of the fraction adder is checked
for high-order zero digits and the fraction is left-shifted
until the high-order digit is non-zero.

The output of the fraction adder is gated to the zero-
digit checker. The zero-digit checker is simply a large
decoder, which detects the number of leading zero digits,
and provides the shift amount to the post-shifter. Since
this same amount must be subtracted from the character-
istic, the zero-digit checker also must encode the shift
amount for the characteristic update adder.

The implementation of the digit post-shifter is the same
as the digit pre-shifter except for the fact that the post-
shift is a left-shift. The first level of the post-shifter shifts
each of the 14 digits left 0, 1 , 2 or 3 and the second level
shifts each digit 0, 4, 8, or 12. The output of the second
level is gated into the add unit fraction result register, from
which the resultant fraction is routed to the proper floating-
point accumulator.

The characteristic update is executed in parallel with
the fraction shift. The zero-digit checker provides the
characteristic update adder with the two’s complement of
the amount by which the characteristic must be reduced.
Since it is not possible to have a post-shift greater than 13,
the high-order three bits of the characteristic can only be
changed by carries which ripple from the low order four
bits. The update adder makes use of this fact to reduce
the necessary hardware and speed up the operation.

Floating-point multiply/divide unit

Multiply and divide are complicated operations. How-
ever, two of the original design goals were to select an
algorithm for each operation such that (1) both opera-
tions could use common hardware, and (2) improve-
ment in execution time could be achieved which would
be comparable to that achieved in the floating-point add
unit. Several algorithms exist for each instruction which
make the first design goal attainable. Unfortunately, the
best of the algorithms generally used for divide are not
capable of providing an improvement in execution com-
parable to the improvement achievable by those used
for multiply. The algorithm developed for divide in the
Model 91 uses multiplication as the basic operator. Thus,
common hardware is used, and comparable improvement
in the execution time is achieved.

In order to give a clear, consistent treatment to both
instructions, this section discusses the multiply algorithm
and hardware implementation first. Then the divide algo-
rithm is discussed separately. Finally, it is shown how
divide utilizes the multiply execution hardware and the
hardware which is unique to the execution of divide is
described. 41

MODEL 91 FLOATING-POINT EXECUTION

42

ANDERSON.

BIT A7 -
BIT 87 -

BIT HALF SUM
BIT PROPAGATES
BIT GENERATES

PROPAGATE
GENERATE

HALF SUM 7

GATE

GATE COMP
~~

GATE TRUE
TRUESUM

BIT A6-
BIT 8 6 -

HALF SUM
PROPAGATE - P6

GENERATE __ G6
COMPSUM

GATE COMP ___(1

BIT A5-
BIT E5-

HALF SUM
PROPAGATE - P5

GENERATE - G5

~

T - TRUESUM
BIT A4-

-P4 PROPAGATE BIT 84-
HALF SUM ~

GENERATE - G4 + G7P6P5+G6P5

G5+CFlP7P6P5 e COMPSUM
C-

T ~-
BIT A3-

- G3 GENERATE
"3 PROPAGATE BIT 83-

HALF SUM
- - TRUESUM

-&SUM
BIT 3

PGPCFI+GG2 - - COMPSUM
C-

BIT A2- HALF SUM
BIT 82-

" G 2 GENERATE
-P2 PROPAGATE

TRUESUM

GG2P3+G3

CFlPG2P3 - COMPSUM

-7
BIT A1 -

-PI PROPAGATE BIT B1 -
HALF SUM

TRUESUM -
~

GENERATE " G 1 GGZP3PP+G3P2

GZ+CFlPGZP3P2
+ COMPSUM -

- TRUESUM
BIT AO- HALF SUM

BIT BO- PROPAGATE -PO GG2P3P2P1

Gl+CFIP3P2Pl

G3PZPl+G2P1

C

HIGH ORDER

GENERATE -GO
-k

t - COMPSUM

Figure 6 Fraction adder, section 1 (high-order).

NOTE.
4 BITS = 1 GROUP
8 BITS = 1 SECTION

AND GROUP PROPAGATE
GG AND PG ARE GROUP GENERATE

AN0 SECTION PROPAGATE
GS AN0 PS ARE SECTION GENERATE

P AND G ARE BIT GENERATE
ANDBIT PROPAGATE

TRUE AND COMPLEMENT GROUP PROPAGATE
BIT SUM GENERATION GROUP 2

TRUESUM SUM LATCH LOW ORDER '' qTk PG2

COMPSUM

P5
P4

GROUP PROPAGATE

'' gyk PGL

GROUP 1

P1
PO

GROUP GENERATE
GROUP 2

G7P6P5P4
G6P5P4 G5P4 qTk GG2

G4

GROUP GENERATE
GROUP 1

G3P2PIPO
GPPlPO G I P O a T F G G 1

GO

BITS A SOURCE IS PRE-SHIFTER
BITS B SOURCE IS T/C GATES
CF1, GATE TRUE, AND GATE COMP
SOURCE IS CARRY LOOK-AHEAD

Multiply algorithm plementing to allow subtraction as well as addition can

tion, and the time required is dependent on the number of An integer in any number system may be written in

additions required.'.' A zero bit in the multiplier results in the form:
adding a zero word to the partial product. Therefore,
because shifting is a faster operation than add, the execu- anbn f an-lbn-l f ' f +
tion time can be decreased by shifting over a zero or a
string of zeros. Any improvement in the multiply execution where
beyond this point is not obvious. However, certain proper-
ties of the binary number system combined with corn- 0 < a < b - 1, and b = base of the number system

Computers usually execute multiply by repetitive ad&- be used to reduce the nUlnber of necessary additions*

, EARLE, GOLDSCHMIDT AND POWERS

SECTION CARRY IN
SECTION GEN AND PROP -

G G l 1 qTk GS6

P G l l
PS6

GG7 q<k GS4

PG7
PS4

GG3
PG3

PS2

NOTE:
GG IS GROUP GENERATE
PG IS GROUP PROPAGATE
P; IS SECTION PROPAGATE
GS IS SECTION GENERATE
SUB IS AN EFFECTIVE SUBTRACT OPERATION

Figure 7 Fraction adder, carry look-ahead.

SUBGSZPSlPS7
SUBGSlPS7

SUBGS4PS3PSZPSlPS7 SUBGS3PSZPSlPS7 GS7 3 SECT '{iRY k C F 6 (CARRY IN TO SECTION 6)

SUBGSWSSPS4PS3PSZPSlPS7
SUBGSSPS4PS3PSZPSlPS7

G S 7 k 6 3 ~:
SUBGS3PSZPSlPS7PS6 SECT

SUBGSZPSlPS7PS6

SUBGSSPS4PS3PSZPSlPS7PS6
SUBGS4PS3PSZPSlPS7PS6

SUBGSlPS7PS6 CARRY
CF5 (CARRY I N TO SECTION 5)

GS6% 3 ;: t SUBGSlPS7'PSBPSS
GS7PS6PS5

SUBGS4PS3PSZPSlPS7PS6PS5
SUBGS3PSZPSIPS7PS6PS5

CARRY
SUBGSZPSIPS7PS6PS5 SECT

CF4 (CARRY IN TO SECTION 4)

GS6PS5PS4 CARRY
GS5PS4

GS7Ps6PS5PS4

SUBGS3PSZPSlPS7PS6PS5PS4
SUBGSZPSlPS7PS6PSSPS4

GS4 3 :: SUBGSlPS7PS6PSSPS4 SECT
t CF3 (CARRY IN TO SECTION 3)

GS5PS4PS3
GS4PS3

GS6PS5PS4PS3 CARRY

SUBGSZPSlPs7PS6PSSPS4PS3

CF2 (CARRY I N TO SECTION 2)

GS4PS3PS2
GS3PS2

GS5PS4PS3PS2 CARRY CF1 (CARRY IN TO SECTION 1)

SUBGSlPS7PS6PSSPS4PS3PSZ A END
CARRY END CARRY T O SIGN CTL

SUBGSl
SUBGSPPSI

SUBGSBPSPPSI
SUBGS4PS3PSZPSl CARRY

SUBGS7PS6PS5PS4PS3PSZPSl

~ v, +FRACTION
OVERFLOW
BIT

CF7 (CARRY I N TO SECTION 7)

One of the properties of numbering systems which is
particularly interesting in multiply is that an integer can
be rewritten as shown below.

a,,b" + an-lbn"l f + akbk + + an-,bn-",

where

ak = b - 1 for any k .

In the binary number system ak can take only the values
0 and 1. Thus, using the above property, a string of 1's
can be skipped by subtracting at the start of the string

CF7
SUB SUM TRUGT

GEN ADDER - TO ADDER S U M LATCH 1 GATE TRUE SUM , ' I
m+KG-l@ SUM TRUGAT

SUB
CF7

SUM COMPGT
GEN ADDER

-
TO ADDER SUM LATCH
GATE COMPLEMENT SUM

and adding at the end of the string:

m I n = 26 + 25 + 24 = 27 - 24,

112,, = 11 1000, = 10000000, - 1 0 0 0 0 2 .

Therefore, a string of 1's in the multiplier can be reduced
from an addition for each 1 in the string to a subtraction
for the first 1 in the string, shift the partial product one
position for each 1 in the string, and an addition for the
last 1 in the string. 43

MODEL 9 1 FLOATING-POINT EXECUTION

SCAN PATTERN

""

"" -

TOTAL SCAN IS 29 PATTERNS OF THREE BITS EACH
EACH PATTERN GENERATES ONE MULTIPLE

NOTE: BITS 0 AND 57
ARE ALWAYS ZERO

Figure 8 Scanning pattern for multiplier.

However, the method described above requires a vari-
able shift and thus does not permit one to predict the
exact number of cycles required to execute multiply.
Furthermore, it does not permit the use of carry-save
adders in the implementation. (Carry-save adders will be
discussed later.)

A multiplier recoding-algorithm, which is based on the
property described above, but which uses uniform shifts
is used in the Model 91. The multiplier is divided into
uniform groups of k bits each. These k bits are recoded to
generate a multiple of the multiplicand, which is added to
or subtracted from the partial product. The multiples are
generated by shifting the position of the multiplicand in
relation to the normal position at which it would enter the
adder for a k equal to one. After adding the generated
multiple to the partial product, the partial product is
shifted k positions and the next group of k bits is con-
sidered.

The correct choice for k is important since an average
of 1/2k of the generated multiples will have a value of
zero, and increasing k (over k equal to one) reduces the
amount of operand reduction capability that is used in-
efficiently. However, if k is greater than two, carry propa-
gate addition is necessary to generate the needed multipli-
cand multiples (shifting can only be used to generate
multiples which are a power of two). In the context of a
fast multiply, the carry-propagate adder increases the
start-up time, which is undesirable. The Model 91 uses a k
equal to two.

The technique used to scan the multiplier is shown in
Fig. 8. Overlapping the high-order bit of one group and
the low-order bit of the next group insures that the begin-
ning and end of a string of 1's is detected once and only
once. Table 2 shows which multiples are selected for
all possible combinations of the two new bits and the
overlapped bit.

Since the objective is fast multiply execution, six groups
of multiplier bits are recoded at one time, and the resul-
tant six multiples are added to the partial product. Five
iterations are sufficient to assimilate the full 56 bits of
the multiplier fraction. Figure 9 shows how the multi-
plier fraction is separated for each iteration and how each

44 iteration is separated for the six generated multiples.

A tree of carry-save adders is used to reduce the gener-
ated multiples from six to two. A carry-save adder, which
can be used whenever successive addition of several
operands is necessary, requires less hardware, has less
data skew and has less delay than a carry-propagate
adder.' The individual carry-save adder takes three input
operands and generates the resulting sum and carry. How-
ever, instead of connecting the carries to the next higher-
order bits and allowing them to ripple, they are treated as
independent outputs. In accordance with the customary
rules for addition, the carries will be added to the next
higher-order bits as separate inputs to the next carry-save
adder down the tree.

Figure 10 illustrates a tree of carry-save adders which
will reduce six input operands to two, thereby retiring 12
bits of the multiplier on each iteration. Note that the final
output of the carry-save adder tree is two operands-sum
and carry-which are shifted right 12 positions and loop
back to become input operands. Thus, the partial product
is accumulated as a partial sum and a partial carry. After
the multiplier has been assimilated, these two operands,
sum and carry, are added in a carry propagate adder to
form the final product.

Implementation

A block diagram of the data flow for the execution of a
multiply is shown in Fig. 11. This data flow can be sepa-
rated into two parts, the iterative hardware and the periph-
eral hardware (that hardware which is peripheral to the
iterative hardware). The latter includes the input reserva-
tion stations, the pre-normalizer, the post-normalizer, the
propagate adder, the result register, and the characteristic
arithmetic. The peripheral hardware is described first, but
since the iterative hardware is the heart of multiply execu-
tion, the major part of this section is devoted to a discus-
sion of this hardware.

Input peripheral hardware

The input hardware includes the reservation stations, pre-
normalizer, and the characteristic arithmetic. As was stated
earlier, the multiply unit has two reservation stations and
appears to the floating-point instruction unit for assign-

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

/ \
MULTIPLIER BIT 124 25 26 27 28 29 30 3 1 32 33 34 35 361

“I

MULTIPLE M6 M5 M4 M3 M2 M‘

Figure 9 Iterations and multiple generation for multiply.

ment purposes as two distinct multiply units. If both units
have been selected for a multiply operation, the fist
unit to receive both operands is given priority to begin
execution. In the case where both units receive their
second operand simultaneously, the unit which was
selected by the floating-point execution unit first is given
priority for execution.

The system architecture specifies that multiply is a
normalized operation. Thus, if the input operands are
unnormalized, they must be gated to the pre-normalizer,
normalized, and then returned to the originating reserva-
tion station. In some cases, one additional machine cycle
is added to the execution time for each unnormalized
operand. However, normalization takes place as soon as
the first operand enters the reservation station, provided
there is not an operation in execution. Thus, normalizing
can take place while the unit is waiting for the second
operand.

The design of the zero digit detector and the left-shifter
are similar to those described earlier for the add unit. If
the zero digit detector, detects an all-zero fraction, the
multiply is executed normally, but the outgate of the result
to the floating-point accumulator is inhibited. Thus the
required resAt, and all-zero-fraction, is stored.

The amount of left shifting necessary to normalize an
operand is gated to the characteristic arithmetic logic,
where the characteristic is updated for this shift. Character-
istic arithmetic for multiply simply requires the two char-
acteristics to be added but this operation can be over-
lapped with the execution of the multiply. Thus, the imple-
mentation is simple and straightforward.

It remains only to update the characteristic because of
post-normalization. The post-shift can never be more than
one digit because the input operands are normalized.
Therefore, in order to eliminate logic levels at the end of
multiply execution, two characteristics are generated:

the normal resultant characteristic and the normal charac-
teristic minus one. Subsequent to post-normalization the
correct characteristic is outgated.

Output peripheral hardware

The output peripheral hardware includes the carry-
propagate adder, the result register and the post-normalizer.
Since the product is accumulated as two operands (sum
and carry) the output of the iterative hardware is gated to
a carry-propagate adder to form the final product. The
design of the carry propagate adder is similar to the one
used in the add unit with the exception that multiply
does not require an end-around carry adder. A result
register is created by latching the last level of the carry
propagate adder. The output of the result register is gated
to the common data bus via the post-normalizer. Detec-
tion of the need for post-normalization is done in parallel
with the carry propagate adder and the result is gated to
the common data bus, either shifted left one digit or
unshifted.

Iterative hardware

The multiply execution area has conflicting design goals.
The execution time must be short but the amount of
hardware necessary for implementation has a practical
upper limit. One could design a multiply unit which would
take two cycles for execution. A large tree of twenty-eight
carry-save adders could be interconnected so that the
multiplicand and the multiplier would be the input to
the tree and the output would be the product.* The per-
formance of this multiply unit would be acceptable but

Figure 10 Carry-save adder tree.

A
MULTIPLES OF MULTIPLICAND

45

MODEL 91 FLOATING-POINT EXECUTION

7 ,,?. ,

c I Is
NOTE

C -CARRY
SHIFT RIGHT 12

CSA -CARRY SAVE ADDER
S -SUM I SHIFT RIGHT 12

CARRY PROPAGATE
ADDER

DIV 5

DIV 2
DIV 3
DIV 4

CSA TREE

c s

-

r"-"
I LOOP I

I CSA E

I
I
I

~
I
I

CSA F 1 :

L """_"""" 1
CARRY SUM

t l
\ V I

SPILL

ADDER DECODER

RESULT

TO DIV 2.3 4.5

SHIFTER NOTE MPR MULTIPLIER
MCAND MULTIPLICAND

CSA CARRY SAVE ADDER
DIV DIVIDE

TLU TABLE LOOK UP
CDB COMMON DATA BUS
FLRB FLOATING REGISTER BUS
FLBB FLOATING BUFFER BUS

Figure 11 Floating-point multiply/divide data flow.

the amount of hardware necessary for implementation is
much too high.

The adopted alternative approach was to select a subset
of the carry-save adder tree such that one iteration through
the tree retires 12 bits of the multiplier. This iteration is
repeated until the full 56 bits of the multiplier have been
exhausted. If each iteration is fast enough, the multiply
execution time for this method approaches that for the
large tree of carry-save adders. In fact, if each iteration
can be 20 nanoseconds the second method can execute a
multiply in three cycles, and the iterative hardware can
be reduced to 20% of that required for the first method.
Thus, with an iterative loop, the primary design problem
is to design the carry-save adder tree so that the iteration
period is minimized. The faster the repetition rate of the
iterative hardware, the better the cost-performance ratio
of the multiply area.

46 There are several ways to arrange the carry-save adders,

and each method affects the iteration period differently.
For example, if they are arranged as shown in Fig. 12,
the feedback loop (the partial product) is from the output
back to the input. In this case, the iteration period be-
comes the time required to make one complete pass
through the tree. However, the adopted arrangement,
shown in Fig. 13, allows the iteration period to approach
the delay through the last carry-save adders (these two
carry-save adders are accumulating the partial product).
But the delay through the path leading to the last two
carry-save adders (the multiplier recoding, multiple gener-
ation and the first four carry-save adders) is much longer
than the delay through the adders. If, however, temporary
storage platforms are inserted in the iterative loop the
concept of pipelining, explained earlier, can be put to use
here. Temporary storage platforms are inserted in the
iterative hardware for deskewing so that the rate of in-
serting new inputs (twelve bits of the multiplier) and the

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

MULTIPLES OF MULTIPLICAND I 'I I l l I
MULTIPLES OF MULTIPLICAND

A

" - l l

- 1 1

NOTE:
C -CARRY
S -SUM SHF RIGHT 12

CSA - CARRY SAVE ADDER

CARRY PROPAGATE ADDER AFTER SUFFICIENT ITERATIONS

Figure 12 CSA tree with feedback loop from output.

rate of accumulating the partial product may safely be
made equal. Therefore, by pipelining the carry-save adder
tree, the second arrangement can be used and the iteration
period is equal to the delay through the last two carry-
save adders.

In order to explain the pipelined tree, the path is ab-
stracted in Fig. 14. Each block represents the logic asso-
ciated with the stages of the pipeline and the first level of
each block represents the temporary storage platform. The
period of the clock is set by the logic delay of the accumu-
lating loop. In the abstract design the logic delay of all
paths between stages of the pipeline is assumed to be the
same as the clock period.

Figure 15 is a timing diagram for the abstracted iterative
hardware. At clock time zero, the first input, ZI, is gated
into the temporary storage in stage one. At clock time
one, Zl, after being operated on by the logic in stage one,
is gated in at stage two and Z2 is gated in at stage one. This
process continues until at clock time three, the original
input, Zl, is entering stage four. During this clock time,
the pipeline is filled, i.e., each stage of the pipeline now
contains data in various forms of completion. At clock
time four, the last input, Z,, enters stage one, and the
partial product starts to accumulate at stage four. The
next three clock times are used to drain the pipeline and
accumulate the full partial product. Thus the total iterative
loop time is that necessary to fill up the carry-save adder

CSAD es m SUM LATCH

RIGHT 1 2 y RIGHT 12 I
CARRY PROPAGATE ADDER AFTER FIVE ITERATIONS

Figure 13 CSA tree with accumulating loop at output.

Figure 14 Abstract drawing of "pipelined" iteration.

INPUTS
A ,

TEMPORARY STORAGE PLATFORM (TSP)

STAGE ONE

I N P U T 7 I
I I

TEMPORARY STORAGE PLATFORM (TSP)

STAGE TWO

TEMPORARY STORAGE PLATFORM (TSP)

STAGE THREE

TEMPORARY STORAGE PLATFORM (TSP)

STAGE FOUR

4
OUTPUT

4
OUTPUT 47

MODEL 9 1 FLOATING-POINT EXECUTION

CLOCK TIME
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8

11 I 12 ; 1 3 ~ I4 I I5 STAGE ONE

11 I 1 2 , 13 , I4 ,
1 5 I STAGE TWO

I 1, , I2 , I, , I, , I, I STAGE THREE

, I1 , I, , 1, , I, , I ,
I STAGE FOUR

NOTE:
I. =
1~.

INPUTS TO STAGE ONE
FIVE INPUTS ARE NEEDED
TO COMPLETE A MULTIPLY

Figure 15 Timing diagram for abstracted iterative hardware.

tree plus five passes around the accumulating loop, or
eight clock periods. If the feedback loop were from out-
put to input, as shown in Fig. 12, the total iterative loop
time would be twenty clock periods. Therefore the iterative
loop time has been reduced by a factor of 2.5, with only
a small increase in hardware. (This is described later.)

The actual implementation of the pipeline is not simple.
First, the temporary storage platforms require extra hard-
ware and add delay to the path. Second, the placement of
the temporary storage platforms is important for two
reasons: (1) The purpose of the temporary storage plat-
form is to deskew the logic (difference between fast and
slow logic paths) and the logic delay is not ideally dis-
tributed, and (2) the placement can affect the amount of
hardware necessary for implementation.

The solution to the first problem led to a design in
which the logic function ‘was designed into the temporary
platform; e.g., a latched carry-save adder or a latched
multiple gate. The extra hardware is only that required
for the feedback loop which latches the logic function;
the added delay is eliminated because the logic function is
designed into the temporary storage. The solution to the
second problem was more complex. First, the clock used
to control the temporary storage platform ingate was
designed as a series clock. AU of the pulses of an iteration
are initiated by a single oscillator pulse and then delayed
to drive the ingates of the successive pipeline stages. The
clock delay between successive temporary storage ingates
is equal to the long path circuit and wiring delay of the
logic between these ingates. The time between iterations
(the oscillator period) is still the delay of the accumulating
loop, but the time between pipeline stages is not equal to
the clock period. This allows the placement of temporary
storage to vary without being dependent on the clock.

The relationship between the logic skew and clock
period can be expressed as

48 Short path > [long path - clock period] + gate width,

where short path is the shortest logic delay between two
temporary storage platforms; long path is the longest
logic delay between two temporary storage platforms; and
gate width is the time necessary to set and latch the tem-
porary storage platform.

The temporary storage platforms were placed to mini-
mize the hardware; then a careful data path analysis was
made to determine the logic skew. The above relationship
was next applied and the short paths “padded” with
additional delay to satisfy the relationship. The result is
shown in Fig. 16. The temporary storage platforms are
at the multiplier recorder, the multiple gates, carry-save
adder C and the accumulating loop, and carry-save adders
E and F.

Since the design goal was to make the iteration period as
short as possible, the design of the last two carry-save
adders required a minimum number of levels and was con-
strained to account for the “short path around the loop.”
Carry-save adders E and F are each designed as a tempo-
rary storage platform and are orthogonal-i.e., are not
ingated simultaneously. The first, carry-save adder E, is
ingated on the first-half of the clock period and the second,
carry-save adder F, is ingated on the second half of the
clock period.

The low order thirteen bits of the multiplier are gated
into the latched multiplier recoder at clock time zero and
recoded to six control lines. Every clock period-20 nano-
seconds-a new set of bits is gated into the multiplier
recoder until the full word (56 bits) is exhausted. The next
step in the pipeline is the latched multiple gates. Six
multiples are generated by shifting the multiplicand, under
control of the output from the multiplier recoder. These
six multiples are reduced to four (two sums and two
carries) by carry-save adders (CSA) A and B. Carry-save
adder C takes three of these outputs and reduces them to
two latched outputs. The sum from CSA-B is latched in
parallel with CSA-C and combines with the two outputs
from CSA-C to provide CSA-D with three inputs. At the
output of CSA-D, the sum and carry are the result of
multiplying twelve bits of the multiplier and the full
multiplicand. The next two latched carry-save adders are
used to accumulate the partial product. Each iteration
adds the latest sum and carry from CSA-D to the previous
results. After five iterations of the accumulating loop the
output of CSA-F is the bit product in carry-save form.
Now the sum and carry operands are gated to the carry
propagate adder and the carries allowed to ripple to form
the final product.

Divide algorithm

Several division algorithms exist,lS6 of varying complexity,
cost and performance, which could be used to execute
the divide instruction in the Model 91. But because of
the relatively complex and iterative nature of divide

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

algorithms, the execution time is out of balance with other
processor functions. Even the higher-performing conven-
tional algorithms contain a shortcoming which requires
thacsuccessive subtractions be separated by a performance-
degrading decode interval.* The Model 91, however,
utilizes a unique divide algorithm which is based on
quadratic convergence.7's'Q''o A major advantage is that
the number of required iterations is reduced (proportional
to log, of the fraction length), which reduces the number of
data-control interactions. Another important advantage
is that MULTIPLY is the basic iterative operator. This
both reduces the cost, by exploiting existing hardware, and
enhances the execution time, because in the Model 91
MULTIPLY is extremely fast.

The divisor and dividend are considered to be the
denominator and numerator of a fraction. On each intera-
tion a factor, Rk, multiplies both numerator and de-
nominator so that the resultant denominator converges
quadratically toward one (1) and the resultant numerator
converges quadratically toward the desired quotient.

* NRR, R, = Quotient,

where N = numerator = dividend,
D = denominator = divisor, and
D R R1 R2 * - . R,,* 1.

The selection of the factor R k is the essential part of
the procedure and is based on the following: The divisor
can be expressed as

D = 1 - X ,

where x 5 1/2 since D is a bit-normalized, binary floating-
point fraction of the form

0.1 xxx
Now, if the factor R is set equal to 1 + x and the de-
nominator is multiplied by R

Dl = DR = (1 - x)(l + X) = 1 - x2,

where x' 5 1/4, since x 5 1/2.
The new denominator is guaranteed to have the form

0.11 xxxx Likewise, selecting R, = 1 + x' will double
the leading 1 on the next iteration to yield

0 2 = DlRl = (1 - x2)(1 + x2) = 1 - x4

= 0 . l l l l xxxx . . . ,
where x 4 5 1/16 since x 5 1/2.

Conventional refers to previous division algorithms which use sub-
traction as the iterative operator. The faster algorithms generate more
than one quotient bit in parallel through the use of pre-wired multiplies.

pendent upon a decode of the partial remainder of the previous itera-
However, the selection of the multiplies for the next iteration is de-

tion.

I MULTIPLIER REGISTER I
MULTIPLICAND

I a MULTIPLICAND

I MPR RECDR I LATCHED

I I

CSA-A C S A 4

I
LATCH

I

r-r-7
I CSA-D I

I I I

CSA-E LATCH
I I

1 I I

CSA.F LATCH

C S

1 1 NOTE:

STORAGE PLATFORM
LATCH IS A TEMPORARY

Figure 16 Multiply iterative loop showing temporary stor-
age.

In general, ifxk < 1/2" then xk+l< 1/2'". n u s , by con-
tinuing the multiplication until x,+ is less than the least
significant bit of the denominator (divisor fraction), the
desired result, namely a denominator equivalent to one
(0.1111111 ... lll), is obtained.

It is important to note that the multiplier for each
iteration is the two's complement of the denominator,

Rk+1 2 - Dk = 2 - (1 - X,) = 1 + X,

Thus the multiplier for iteration k is formed by taking
the two's complement of the result of iteration (k - 1).
However, in this form the algorithm is still not fast
enough. For a 56-bit fraction, eleven multiples are required
with a two's complement inserted between six of the
multiples :

Q = NRRlRzRSR4Rs

R5 = 2 - D4 and D4 = DRRlR2R3R4. 49

MODEL 91 FLOATING-POINT EXECUTION

Table 2 Multiplier recoder rules.

Input output Reason
multiple

n* (n + 1) (n + 2)

0 0
0 0
0 I
0 1
1 0
1 0
1 1
1 1

0
+2
+2
+4
-4
-2
-2

0

No string
End of string
Beginning and end
End of string
Beginning of string
Beginning and end
Beginning of string
Center of string

* Bit n is the high-order position

But if the number of bits in the multiplier could be reduced,
the time for each multiply would be decreased. If in order
to obtain n bits of convergence the multiplier is truncated
to n bits [l + xT where (xT - x) < 2 - 7 it can be shown
that the resultant denominator is equivalent to

(1 + XT)(l - x) = 1 - x2 + ITI,

where 0 < T (which is due to truncation) < 2-".

resultant denominator can now have two forms:

Dk {
Because the additional term T is always positive, the

0.11111 * a * xxxxx * e *

1 .ooooo . . . xxxxx . . . *

The denominator can converge toward unity from above
or below, but it will converge, so no additional problems
are encountered.

Therefore, the number of bits in the multiplier can be
reduced to the string bits (all 0 or all 1) and the num-
ber of bits of convergence desired. The string bits,
since they are all 0 or all 1, can be skipped in the multiply.
Thus the multiply time has been improved considerably
and so, consequently, has the divide time. To improve
the initial minimum string length, thus reducing the num-
ber of iterations, the first multiplier, R, is generated by
a table-lookup which inspects the first seven bits of the
divisor. The first multiply guarantees a result which has
seven similar bits to the right of the binary point
(1 f x has the form ii.aaaaaau + etc.).

The following sequence outlines the operations which
result in the execution of a divide.

1. Bit normalize the divisor and shift the dividend accord-
ingly.

50 2. Determine the first multiplier, R, by a table-lookup.

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

3. Multiply D by R forming D l .
4. Multiply N by R forming Nl.
5. Truncate Dk and complement to form R k .

7. Multiply Nk by Rk forming Nk+l.
8. Iterate on 5, 6 and 7 until D,+, * 1 and then Nk+" =

6. Multiply Dk by Rk forming Dk,,.

Quotient.

Divide implementation

Each iteration of divide execution consists of three opera-
tions as shown above. The problem in implementation is
to accomplish these three operations utilizing the multiply
hardware described previously and accomplish them in
the minimum amount of time. But there are three points
which create difficulty. First, the multiplier is a variable
length operand, the length being different on each iteration.
The first multiplier, determined by table-lookup, is ten bits
and yields a minimum string length of seven; the second
multiplier is fourteen bits; the third multiplier is twenty-
eight bits, etc. In other words, the minimum string length
can be doubled on each iteration after the first. Second,
the result of one iteration is the multiplicand for the next
iteration. Since the output of the multiply iterative hard-
ware is two operands-carry and sum-the carry propagate
adder must be included in the divide loop. Third, two
multiplies are required in each iteration-one determines
what to do on the next iteration (multiplier X denomi-
nator) and one converges the numerator towards the
quotient (multiplier x numerator).

When all three of these points are considered simul-
taneously they present a dilemma. Since two multiplies
are necessary it is desirable to overlap the two and save
time, but any multiply for which the multiplier is greater
than twelve bits requires that the carry-save adder loop
be used. Also, the fact that the carry propagate adder
must be included in the loop lengthens the time for each
iteration. Several design iterations were required before
arriving at the correct solution.

First consider the entries in Table 2 and note that the
leading string of 1's or 0's in the multiplier can be skipped
since they result in a zero multiple out of the multiplier
recoder. Also, if the input of the multiplier recoder is
complemented the sign of the output changes but the
magnitude remains the same. Thus, this property can
be used to produce ?=x, at the output of the recoder.

Next consider a multiplier (complement of truncated
denominator) such as the following:

1 . 0000 0000 000 0 ooxx xxxx xxxl
0. 1111 1111 111 [1 l lxx xxxx xxxl 1
If all positions were recoded, a bit of value 1 would be
recoded from the high-order end and a set of bits of value
F x k from the right end (1 f xk). However, if only the

Table 3 Formats of the denominators and their multipliers.

Digit

D
R

D X R = D 1

R I

D1 X R1 = D2

R2

D2 X Rz = D3

Ra

Da X Ra = D4

R4

Ds
(not formed)

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

l E X xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx oooo m
xxxx' xxxx XXO] Determined by table lookup of denominator
1111 11 l x xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
m OOOX xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Determined by complementing denominator

1111 1111 1111 l l x x xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
m m m ooxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

oooooooo OOE xxxx xxx l
1111 1111 !$ 11% xxxx

1111 1111 1111 1111 1111 hllii xxxx xxxx 1
1111 1111 1111 1111 1111 l l l x xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx oooo m m m m OOOX xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

m m m o o o o m o O 0 j T ~ x x x x 1

1111 1111 1111 1111 1111 1111 1111 1111 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
m m oooo oooo m oooo oooo oooo xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

oooooooommmmm
1111 1111 1111 1111 1111 1111 1111

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
m m m m m OOOO m oooo 0000 0000 OOOO OOOO 0000 0000 0000 m

"

Long precision divide result is N , = N,R,
Short precision divide result is N4 = h'RRIR,R,

portion in brackets is gated to the recoder the output will
have value T2"xk.* The bits in the bracket are chosen
such that the left-most three bits are identical. Thus,
multiple six (refer to Fig. 9) is not used because a zero
multiple is always recoded, and the product FDkXk or
T N k x k is accomplished by the five operands gated to
multiple gates one through five. If the unshifted multi-
plicand is gated simultaneously into the sixth multiple
gate the sum of all six operands is D k + (TDkXk) or
D,(1 T xk), which is the desired result. The result which
is generated by adding the carry and sum out of the carry-
save adder tree (refer to Fig. 11) is the following:

D,+I = { 0. 1111 1111 1111 1111 1111 l l l x x x x x "3

1. 0000 0000 0000 0000 0000 ooox x x x x +

Thus, without using the carry-save adder loop the leading
string has been increased by nine bits.

Table 3 presents the format of the multipliers and their
denominators. Notice that the first multiplier is ten bits
and the second is seven. These are fixed and cannot be
changed without making the table-lookup decoder larger.
Thus the third multiplier is the first one capable of using

* The multiplicand is shifted right twelve positions to compensate for
the 2" factor.

more than nine bits. But if a multiplier of more than nine
bits is used, the carry-save adder loop must be included
in the divide loop. Since this is undesirable (concurrency
among multiplies is discussed below) the multiplier for
the third and fourth iterations is chosen to be nine bits,
thereby increasing the string length by nine each time.
Thus, D4 has 32 leading 1's or 0's. Now if Dc is multi-
plied by multiplier four, R4, the result will be 64 leading
1's or O's, which is equivalent to unity within the desired
accuracy. Therefore, since it is not necessary to calculate
multiplier five, R5, this multiply is not done and since
only the numerator is going to be multiplied by multiplier
four, the carry-save adder loop is used to speed up this
last operation. (This is discussed more fully below.)

The second difficulty, which was that the carry propagate
adder must be included in the path, was used to solve the
third difficulty. Consider Fig. 17, which is the divide loop.
To begin the execution of a divide the divisor is multiplied
by the first multiplier (R), and the first denominator (D l)
is generated at the output of the CSA tree. These two
outputs are added in the carry propagate adder; the output
loops back to the input and becomes the new multiplicand;
the truncated and complemented output forms the new
multiplier. Note that the complete loop contains two
temporary storage platforms-one at CSA-C and one at 51 .

MODEL 91 FLOATING-POINT EXECUTION

I I - L
MULTIPLICAND SHIFT

RECOOER (LATCH)

I I - 1 1 1

CSA-A CSAB

FIRST HALF

SECOND HALF

CSAC (LATCH)

I I

I I I

TO CARRY6AVE

ADDER LOOP

CARRY PROPAGATE
ADDER

Figure 17 Divide loop.

Figure 18 Timing diagram showing concurrency in divide loop.

the output of the propagate adder, the result latch. Thus
as soon as R X D is gated into CSA-C, the next multiply,
R X N , can be started. Now R X D advances to the result
latch and loops back to start the next multiply R1 X Dl .
At this time R X N, which is latched in CSA-C, advances
through the adder to the result latch. So the two multiplies
follow each other around the divide loop. The first deter-
mines what the second should be multiplied by to con-
verge eventually to the quotient.

This chain continues until multiplier four has been cal-
culated. Since denominator five is equivalent to one, the
multiply is not done. The 32-bit multiplier is gated into
the reservation station and then gated to the multiplier
twelve bits at a time as shown in Table 3. The result of
this multiply, N 4 R 4 , is the final quotient. The diagram in
in Fig. 18 shows the concurrency in the divide loop. The
multiplier recoder latch is changed each time a denomi-
nator multiply is completed. Notice that two multiplies
are always in execution, one in the first half of the divide
loop (from input to CSA-C) and one in the second half of
the divide loop (from CSA-C to the result latch).

Conclusions

The prime effort during the design of the floating-point
execution unit was to develop an organization which
would achieve a balance between instruction execution
and preparation. Early in the design phase it appeared
that an organization which would achieve this result
would have a poor cost-performance ratio.

CLOCK TIME

t I

1
DIV 1 , DIV 2 , DIV 3 , DIV 4 , DIV 5

I DIVIDE ITERATIONS

R
I R I R, R3 4 I I MULTIPLIER RECODER

R4

D x R N X R Dl X R, N, X R, D, X R, N, X R, D3 X R, N3 X R3
FIRST.HALF DIVIDE LOOP

D X R N x R Dl x R, Nl X R, D, X R, N, X R, D, X R3 N3 X R,
SECOND.HALF DIVIDE LOOP

N4 R4
I I MULTIPLY USING CSA LOOP

52 1 I PROPAGATE ADDER

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

Concurrency, obviously, had to be the key to high
performance, but the connotation of concurrency in corn
puters is parallel execution of different instructions. Thus
the early organizations exhibited more than one execution
unit and a high cost. In the final organization, concurrency
is the key to the high performance, but this organization
exhibits several levels of concurrency :

1. Concurrent execution among instruction classes.
2. Concurrent execution among instructions in the same

3. Concurrent execution within an instruction (multiply
class (add unit).

iterative hardware and divide loop).

The concepts of instruction-oriented units and reserva-
tion stations were used to keep the performance level
sufficiently high but reduce the cost. These two concepts
yield the same performance as several units without the
cost of several units. The instruction-oriented units allow
the design to be hand-tailored for faster execution and
permit the use of a unique algorithm to execute divide.

Acknowledgments

The design of a computer unit such as this-containing
nearly as many logical decisions as IBM’s previous largest
central processor-requires a great deal of decision mak-
ing. The authors gratefully acknowledge the logical and
engineering design contributions made by the following
individuals: Mr. W. D. Silkman for the floating-point in-
struction unit; Messrs. J. J. DeMacedo, J. G. Gasparini,

L. Grosman, R. C. Letteney and R. M. Wade for the
multiply/divide unit; Messrs. M. Litwak, K. J. Pockett
and K. G. Tan for the add unit; and Mr. E. C. Layden
for the processor clock.

Acknowledgment is also made for the early planning
efforts of Mr. R. J. Litwiller.

References

1. W. Buchholtzet al., Planninga Computer System, McGraw-
Hill Publishing Co., New York, 1962.

2. G. M. Amdahl, G. A. Blaauw and F. P. Brooks, Jr.,
“Architecture of the IBM System/360,” IBM Journal 8,
87 (1964).

3. D. W. Anderson, et al., “Model 91 Machine Philosophy
and Instruction Handling,” IBM Journal 11, 8 (1967)
(this issue).

4. R. M. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” IBM Journal 11, 25 (1967)
(this issue).

5. R. F. Sechler, A. K. Strube and J. R. Turnbull, “ASLT
Circuit Design,” IBM Journal 11, 74 (1967) (this issue).

6. 0. L. MacSorley, “High Speed Arithmetic in Binary Com-
puters,” Proc. IRE 49, 67, (1961).

7. R. E. Goldschmidt, “Applications of Division by Con-
vergence,” Master’s Thesis, MIT, June 1964.

8. C. S. Wallace, “A Suggestion for a Fast Multiplier,” Trans.

9. M. V. Wilkes et al., Preparation of Programs for an Elec-
tronic Digital Computer, Addison-Wesley Publishing Co.,
Cambridge, Mass., 1951.

10. T. C. Chen, “Fast Division Scheme,” private communica-
tion, November 4, 1963.

IEEE, EC-13, 14-17 (1964).

Received November I , 1965.

53

MODEL 91 FLOATING-POINT EXECUTION

