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Floating-point Execution Unit 

Abstract: The  principal  requirement  for  the  Model 91 floating-point  execution  unit  was  that it be  designed to support the instruction- 
issuing rate of  the  processor.  The  chosen  solution  was  to  develop  separate,  instruction-oriented  algorithms  for  the  add,  multiply, and 
divide  functions.  Linked  together by the  floating-point  instruction unit, the multiple execution  units  provide  concurrent  instruction 
execution at the  burst rate of one  instruction per cycle. 

Introduction 

The instruction unit of the IBM System/360 Model 91 is 
designed to issue instructions at a burst rate of one in- 
struction per cycle, and the performance of floating-point 
execution must support this rate. However, conventional 
execution unit designs cannot support this level of per- 
formance. The Model 91 Floating-point Execution Unit 
departs from convention and is instruction-oriented to 
provide fast, concurrent instruction execution. 

The objectives of this paper are to describe the floating- 
point execution unit. Particular attention is  given to the 
design  of the instruction-oriented units to reveal the tech- 
niques which  were  employed to match the burst instruction 
rate of one instruction per cycle. These objectives can 
best  be  accomplished by dividing the paper into four 
sections-General design considerations, Floating-point 
terminology, Floating-point add unit, and Floating-point 
multiplyldivide unit. 

The first section explains  how the desire for concurrent 
execution of instructions has led to  the design  of multiple 
execution units linked together by the floating-point in- 
struction unit. Then the concept of instruction-oriented 
units is discussed, and its impact on the multiplicity of 
units is pointed out.  It is shown that, with the instruction- 
oriented units as building blocks and the floating-point 
instruction unit as the “cement,” an execution unit evolves 
which  rises to the desired performance level. 

The section on floating-point terminology briefly  reviews 
the System/360 data formats and floating-point definitions. 

34 The next two sections  describe the design  of the instruc- 

tion-oriented units. The first of these is the floating-point 
add unit description which is divided into two sub-sections, 
Algorithm and Implementation. In the algorithm sub- 
section, the complete algorithm for execution  of a floating 
add/subtract is considered with emphasis on  the dif- 
ficulties inherent in  the implementation. Since the add 
unit is instruction-oriented, (i.e., only add-type instructions 
must  be considered), it is  possible to overcome the in- 
herent difficulties  by  merging the several steps of the 
algorithm into three hardware areas. The implementation 
section describes  these three areas, namely, characteristic 
comparison and pre-shifting, fraction adder, and post- 
normalization. 

The last section describes the floating-point multiply/di- 
vide unit. This section describes the multiply algorithm and 
its implementation first, and then the divide algorithm 
and  its implementation. The emphasis of the multiply 
algorithm sub-section  is on recoding the multiplier and 
the usefulness of carry-save adders. In the implementation 
sub-section the emphasis is on  the iterative hardware which 
is the heart of the multiply operation. An arrangement of 
carry-save adders is shown which, when  pipelined  by add- 
ing temporary storage platforms, has an iteration repetition 
rate of  fifty  Mc/sec. The divide algorithm is described next 
with emphasis on using multiplication, instead of sub- 
traction, as the iterative operator. The discussion of divide 
implementation shows how the existing multiply hard- 
ware, plus a small amount of additional circuitry, is  used 
to perform the divide operation. 
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Figure 1 Floating-point  execution  unit  capable of concurrent  execution. 

General design  considerations 

The programs considered “typical” by the user of high- 
performance computers are floating-point oriented. There- 
fore, the prime concern in designing the floating-point 
execution unit is to develop an overall organization which 
will match the performance of the instruction unit. How- 
ever, the execution time of floating-point instructions is 
long compared with the issuing rate of these instructions by 
the instruction unit. The most obvious approach is to 
apply a faster technology and with special design tech- 
niques reduce the execution time for floating-point. But 
a study of many “typical” floating point programs re- 
vealed that  the execution time per instruction would have 
to be 1 to 2 cycles in order to match the performance3 of the 
instruction unit.* Conventional execution unit design, 
even with state-of-the-art algorithms, will not provide 
these execution times. 

Another approach considered was to provide execution 
concurrency among instructions;  this obviously would re- 
quire two complete floating-point execution units.+ An 
attendant requirement would be a floating-point instruc- 
tion unit. This unit is necessary to sequence the operands 
from storage to  the proper execution unit;  it must buffer 
the instructions and assign each instruction to a non-busy 
execution unit. Also, since the execution time is not  the 
same for all instructions the possibility now exists for 
”_ 

* Even  though  the  burst  rate of the  instruction  unit  is one instruction 
per cycle, it  is  not necessary to execute at  the same  rate. 

t Since  two complete execution  units me  necessary  for  Concurrent 
execution,  the  cost-performance  factor  is  important.  Analysis showed 
that  execution  times of three  cycles  for  add  and seven cycles for  multi- 
ply were  reasonable  expectations. 

out-of-sequence execution, and  the floating-point in- 
struction must insure that executing out of sequence 
does not produce incorrect results.* The organization 
for an execution unit capable of concurrent execution is 
shown in Fig. 1. Buffering and sequence control of all 
instructions, storage operands, and floating-point accu- 
mulators are  the responsibility of the floating-point execu- 
tion unit. Each of the execution units is capable of execut- 
ing all floating-point instructions. 

One might be led to believe that this organization is a 
suitable solution in itself. If multiply can be executed 
in  seven  cycles and two multiplies are executed simul- 
taneously, then the effective execution time is 3.5 cycles. 
Similarly, for add  the execution time would go from three 
cycles to 1.5 cycles. However, the operating delay of the 
floating-point instruction unit  must be considered, and it 
is not always possible to execute concurrently because of 
the dependence among instructions. When these problems 
are considered the effective execution time is close to three 
cycles per instruction, which is not sufficient. A third 
execution unit would not help because the complexity of 
the floating-point instruction unit increases, and the 
amount of hardware becomes prohibitive. 

The next solution to be considered was to improve the 
execution time of each instruction by employing faster 
algorithms in the design of each execution unit. Obviously 
this would increase the  hardware,  but since the circuit 

* Dependence  among  instructions  must be controlled. If instruction 
n + 1 is  dependent on the  result of instruction n instruction n + 1 
must  not be allowed to start  until  instruction n is’completed. 35 
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Table 1 Floating-point  instructions executed by floating-point  execution unit. 

Condition  Arithmetic 
Type Znstruction code  Floating-point  exceptions* unit 

RR-RX Load (S/L) NO FLIU 
RR Load  and  Test (S/L) YES FLIU 
RX Store (S/L) NO FLIU 
RR Load  Complement (S/L) YES ADD 
RR Load  Positive (S/L) YES ADD 
RR Load  Negative (S/L) YES ADD 
RR-RX Add  Normalized (S/L) YES U, E, LS ADD 
RR-RX Add  Unnormalized (S/L) YES E, LS  ADD 
RR-RX Subtract  Normalized (S/L) YES U, E, LS  ADD 
RR-RX Subtract  Unnormalized (S/L) YES E, LS  ADD 
RR-RX Compare (S/L) YES ADD 
RR Halve (S/L) NO  ADD 
RR-RX Multiply NO  U, E M /D 
RR-RX Divide NO  U, E, FK M/D 

Exceptions : 
U-Exponent-underflow exception 

LS-Significance exception 
E-Exponent-overflow exception 

FK-Floating Point Divide Exception 

delay  is a function not only of the circuit  speed but also of 
the number of loads on the input net and  the length of 
the interconnection wiring,  more hardware may not make 
the unit f a ~ t e r . ~  These two factors-the  desire for faster 
execution of each instruction and the size  sensitivity of the 
circuit  delay,  have produced a concept  which  is unique to 
the organization of floating-point execution units, and 
which  was adopted for  the Model 91 : the concept of using 
separate execution units for different instruction types. 
Faster execution of each instruction can  be  achieved if 
the conventional execution unit is separated into arithme- 
tic units designed to execute a subset of the floating-point 
instructions instead of the entire set. This conclusion  may 
not be  obvious, but a unit designed  exclusively for a class 
of similar instructions can  execute those instructions faster 
than a unit designed to accommodate all floating-point 
instructions. The control sequences are shorter and less 
complex; the  data flow path has fewer  logic  levels and re- 
requires  less hardware because the designer has more free- 
dom in  combining serial operations to eliminate circuit 
levels; the circuit  delay  per  level is faster because  less hard- 
ware  is required in the smaller, autonomous units. To 
implement the concept  in the Model 91, the floating-point 
instruction set was separated into two subsets: add  and 
multiply/divide. Table 1 shows a list  of the instructions 
and identifies the unit in  which  each instruction is executed. 
With this separation, an  add unit which  executed all add 
class instructions in two cycles, and a multiply/divide unit 
which  executed  multiply  in  six  cycles and divide  in  eighteen 
cycles,  were  designed. 

36 The use  of this concept  somewhat  changes the character 

of concurrent execution. It is  possible to have concurrent 
execution  with one execution unit-Le., two arithmetic 
units, add  and multiply/divide.  The  performance  is not 
quite as good as that attainable using two execution units, 
but less hardware is required for the implementation. 
Therefore, more arithmetic units can  be added to improve 
the performance. First, two add units and two multiply/di- 
vide units were considered.  But the floating-point instruc- 
tion unit can  assign  only one instruction per  cycle. 
Therefore, since an  add operation is two cycles long, two 
add units could  be  replaced  by one add unit if a new add 
class instruction could be started every  cycle.  This  would 
introduce still another example of concurrent execution: 
concurrent execution  within an arithmetic unit. 

Such  concurrency  within a unit is facilitated by the 
technique of pipelining. If a section of combinatorial logic, 
such as the logic to execute an add, could be designed  with 
equal delay in all parallel paths through the logic, the 
rate  at which  new inputs could enter this section of  logic 
would  be independent of the  total delay through the logic. 
However,  delay  is  never equal; skew  is  always  present and 
the interval between input signals  must be greater than the 
total skew  of the logic  section.  But temporary storage plat- 
forms can  be inserted which  will separate the section  of 
combinatorial logic into smaller synchronous stages.  Now 
the total skew has been  divided into smaller  pieces;  only the 
skew  between  stages has to be considered. The interval 
between inputs has decreased and now depends on the 
skew  between temporary storage platforms.  Essentially 
the temporary storage platform is  used to separate one 
complete job, such as an add, into several  pieces;  then 
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several jobs can be executed simultaneously. Thus, inputs 
can be applied at a predetermined rate and once the pipe- 
line  is full the  outputs will match this rate. 

The technique of pipelining does have practical limits, 
and these limits differ for each application. In general 
the  rate at which new inputs can be applied is  limited by 
the logic  preceding the pipeline (e.g., add is limited to one 
instruction per cycle  by the floating-point instruction unit) 
or by the  rate at which outputs can be  accepted.  Also, 
both the rate of  new inputs and the length of the pipeline 
are limited by dependencies among stages of the pipeline 
or between the  output and successive inputs (e.g., the 
output of one add can become an input for the next). 

The add unit requires two cycles for execution and is 
limited to one new input per cycle. Thus pipelining  allows 
two instructions to be  in  execution concurrently, thereby 
increasing the efficiency with a small increase  in hardware. 

Further study of pipelining techniques would indicate 
that a three-cycle multiply and a twelve-cycle  divide are 
possible. Here the technique of pipelining  is  used to speed 
up the iterative section of the multiply which  is critical to 
multiply/divide execution. (This is  discussed  in detail in 
the section on the multiply/divide unit.) 

The execution unit would consist at this point of a 
floating-point instruction unit, an  add unit which could 
start  an instruction every  cycle, and a multiply/divide 
unit which  would  execute  multiply  in three cycles and 
divide in twelve  cycles.  However the performance still 
would not match the instruction unit. The execution 
times would be adequate but  the units would spend con- 
siderable time waiting for operands. Therefore, instead of 
duplicating the arithmetic unit (which  is  expensive) extra 
input buffer  registers have been added to collect the 
operands and necessary instruction control information. 
When both operands are available, the  control information 
is processed and a request made to use an arithmetic unit. 
These  registers are referred to as "reservation stations." 
They can be and are treated as independent units. 

The final organization is  shown  in  Fig. 2. It consists of 
three parts:  the floating-point instruction unit;  the floating- 
point add  unit;  and the floating-point multiply/divide unit. 
Another paper in this series3  explains the floating-point 
instruction unit in detail. The problems involved and both 
the considered solutions and the implemented solutions 
are discussed. The floating-point add unit has three reser- 
vation stations and,  as  stated above, is treated as three 
separate add units, Al, A2 and A3. The floating-point 
multiply/divide unit has two reservation stations, M/D1 
and M/D2. The last two sections  of this paper describe 
the design of these two units in detail. 

Floating-point terminology 

The reader is assumed to be familiar with  System/360 
architecture and terminology.'  However, the floating-point 
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Figure 2 Overall  organization of floating-point  unit. 

data format and terminology will  be  briefly  reviewed  here. 
Floating-point data occupy a fixed-length format, which 

may  be either a full-word short format or a double-word 
format : 

Short Floating-point Binary Format 

Sign Characteristic Fraction 

0 1 _ _ _ _ _  7 8 _ _ _ _  31 

Long Floating-point Binary Format 

Sign Characteristic Fraction 

0 1 _ _ _ _  7 8 _ _ _ _ _  63 

The first bit(s)  in either format is (are) the sign  bit(s). The 
subsequent seven bit positions are occupied by the charac- 37 
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Figure 3 Floating-point add data flow. 

teristic. The fraction  consists of  six  hexadecimal  digits 
for the short format or 14 hexadecimal  digits for the long. 

The radix  point of the fraction is  assumed to be  im- 
mediately to the left of the high-order  fraction  digit. To 
provide the proper magnitude for the floating-point  num- 
ber, the fraction is considered to be  multiplied by a power 
of  16. The characteristic portion, bits 1-7 of both floating- 
point formats, indicates this power. The characteristic is 
treated as an excess  64 number  with a range from -64 
through "63 corresponding to  the binary  expression of 
the values 0-127. 

Both  positive and negative quantities have a true frac- 
tion, the difference in sign  being  indicated by the sign 
bit. The number is positive or negative  accordingly as the 
sign bit is zero or one. 

A normalized  floating-point  number  has a non-zero 
high-order  hexadecimal fraction digit. To preserve  maxi- 
mum  precision  in  subsequent operation, addition, sub- 
traction, multiplication, and division are performed  with 
normalized  results.  (Addition and subtraction may  also 
be  programmed to be  performed  with  unnormalized  re- 
sults. The operands for any  floating-point  operation  can 
be either  normalized or unnormalized.) 

Floating-point add unit 

The challenge  in the design  of the add unit was to minimize 
the number of logical  levels in the longest  delay path. 
However, the sequence of operations necessary for the 
execution of a floating-point add impedes the design goal. 
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Consider the following operations: 

(a) Since the radix point must be aligned  before an add 
can proceed, the characteristics of the two operands 
must be compared and  the difference  between them 
established. 

(b) This difference  must  be  decoded into the shift amount, 
and  the fraction with the smaller characteristic shifted 
right a sufficient number of positions to make the 
characteristics equal. 

(c) Since subtraction is to be performed by forming the 
two's complement of one of the fractions and then 
adding the two fractions in  the fraction adder, one of 
the fractions must pass through true/complement logic. 

(d)  The  two operand fractions are added in a parallel 
adder. The carries must propagate from the low order 
end to  the high order end. 

(e) Because  of subtraction, the  output must provide for 
both the  true sum and  the complement sum, depending 
on the high-order carry. 

(f) If the system architecture calls for left justification or 
normalized operation, the result out of the adder must 
be checked  for high-order zeros and shifted left to 
remove these zeros. 

(g) The characteristic must be reduced by the  amount of 
left shift necessary to normalize the resultant fraction. 

(h) The resultant operand must be stored in the proper 
accumulator. 
The above sequence of operations implies a series of 

sequential execution stages, each  of  which is dependent on 
the output of the previous  stage. The problem then, is to 
arrange, change and merge  these operations to provide 
fast, efficient  execution for a floating-point add. 

None of the steps can be eliminated. Each step is  re- 
quired in order to execute add; but the steps can be merged 
so that the interface between them is  eliminated,* and 
each step can  be changed to provide only the necessary 
information to the next stage, For example, the long data 
format consists of 14 hexadecimal digits; therefore any 
difference  between the two characteristics which  is greater 
than 14 will result in an all zero fraction. This means that 
the characteristic difference adder need not generate a sum 
for the high-order three bits. Instead, if the difference  is 
greater than 14, a shift of 15 is forced. As a result, the 
characteristic difference adder is faster and less  expensive. 

The add unit algorithm is separated into three parts: 
characteristic comparison and pre-shifting, fraction adder, 
and post-normalization (Fig. 3). The first section, the 
characteristic comparison and pre-shifting operation, 
merges the first three operations from the sequence given 
above; the second section-the fraction adder-merges 
the next two operations; the final  section-post normaliza- 

*Levels  are used to  encode  the  output of one step,  which  is subse- 

these  levels. 
quently  decoded  in  the  next  step.  Merging  the  two steps will  eliminate 

___- 

CA > c, c , - 1 1 1 1  1 0  0 

1 1 1 1 1 0 0  c, 
0 0 1 0 1 1 1  c, 

- 

1 HOT ONE 

(RESULT IS TRUE) 1 1 1 0 1 1 1 1 C,-  C, 

C,=l 1 0   1 0  0 0 

(RESULT 
IS COMPLEMENT) 0 1 1 0 1 1 0 0 

1 HOT ONE 

COMP.  RESULT 0 0 1 0 0 1 1 

MUST ADD  HOT  ONE 1 
0 0 1 0  1 0  0 c,-c, 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
C, c C, (END-AROUND CARRY) 

1 1 0 1 0 0 0  c, 
0 0 0 0 0 1 1  c, 

(NO  CARRY) 0 1 1 0 1 0 1 1 

COMPLEMENT 0 0 1 0 1 0 0 CORRECT  RESULT 
"""~"~"""""~""~""~"~"" -"- 

Figure 4 Examples of exponent arithmetic. 

tion-merges the final three operations. The hardware 
implementation of each of these three sections is discussed 
below. 

Implementation 

Characteristic comparison and pre-shifting 

The first stage of execution for all two-operand instructions 
(floating-point add, subtract, and compare) is to compare 
the characteristics and establish the magnitude of the 
difference  between them. The characteristic (C,) of one 
operand is always subtracted from the characteristic 
(C,) of the other operand (CA - C,). Characteristic B 
is always complemented as it is gated in at the reservation 
station. 

If the  output of the characteristic difference adder is 
the  true sum or the complement of the true sum, the 
output can be  decoded directly at the pre-shifter. But the 
adder always subtracts CB from CA and if CB > C, the 
sum would be  negative. Therefore, to eliminate the pos- 
sibility of having to  add a 1 in the low order position 
and complement  when C, is greater than CA, an "end- 
around-carry'' adder is used. This is shown by the example 
in Fig. 4. 

The characteristic comparison can result in two states- 
CA > CB or CB > CA. If CA > C,, there is a carry out 
of the high order position of the characteristic differ- 
ence adder, and the carry is  used to gate the fraction of 
operand B to the pre-shifter. The true sum output of the 
characteristic difference adder is the amount  that  the 
fraction must be shifted right to make the characteristics 39 
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INPUTS DIGITS 

0 0 0 0 0 0 
1 1 1 1 1 1 

2 2 2 2 2 
3 3 3 3 

4 4 4 
5 5 

6 FIRST LEVEL 
SHF RIGHT 0 SECOND LEVEL 
SHF RIGHT 1 SHF RIGHT 0 
SHF RIGHT 2 SHF RIGHT 4 
SHF RIGHT 3 SHF RIGHT 8 

SHF RIGHT12 

"" 

"- "" - - - - - -" - 
" 

Figure 5 Digit  pre-shifter. 

equal.  If C, > CA, there is no carry out of the high order 
position of the characteristic  difference adder, and the 
absence  of a carry  is  used to gate the fraction of operand 
A to the pre-shifter. In this  case the complement of the 
sum output of the characteristic  difference adder is the 
amount that the fraction must  be  shifted  right to make the 
characteristics  equal. In both  cases the second operand 
fraction (the one with the larger  characteristic)  is gated to 
the true-complement input of the fraction adder. 

The characteristic of the unshifted fraction becomes the 
resultant characteristic. It is gated to the characteristic- 
update adder, and after updating, if necessary, it is gated 
to the accumulator specified  by the instruction. 

The output of the characteristic  difference adder is 
decoded by the pre-shifter and the proper fraction shifted 
right the necessary  number  of  positions. The pre-shifter 
is a parallel digit-shifter which shifts  each of the 14 digits 
right  any amount from zero to fifteen. The decode of the 
shift amount is  designed into each  level,  thereby  eliminating 
serial logic  levels for decoding. 

The pre-shifter  consists of two circuit levels. The first 
level  shifts a digit  right by 0, 1, 2 or 3 digit  positions. The 
second  level  shifts a digit right by 0, 4, 8, or 12 digit 
positions. Thus, by the proper combination of these 
amounts any right digit shift between and including 0 and 
15 can  be  executed. Figure 5 shows an example of the 
pre-shifter. 

The un-shifted fraction is gated to the true/complement 
40 gates of the adder. Here the fraction  is  gated  unchanged 
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if the effective operation is ADD and complemented if the 
effective  operation  is SUBTRACT. The true/complement 
gating is overlapped  with the pre-shifter on a time  basis. 
The output of both the true/complement logic and the 
pre-shifter are the inputs to the fraction adder. 

Fraction adder 

Most of the time required for binary adders is carry prop- 
agation time.  Two operands must  be  combined and the 
carries  allowed to ripple from right (low order) to left 
(high  order). The usual method of  finding the sum is to 
combine the half  sum*  of  bit n (higher order) with the 
carry from bit n - 1 (S, = A ,  Q Bn v en).+ The carry 
(C,) into bit  position n is  also a three term expression 
which includes the carry into bit  position n - 1 

If the carry  term  is  rearranged to read 

two  new terms can be  defined  which separate the carry 
into two  parts-generated carry, and propagated carry. 
The generated carry (Gn-l) is  defined  as An-1.  Bn-l, and 
the carry propagate function  (often  abbreviated to simply 
propagate or PnJ is  defined as An-1 V Bn-l. Now the 

i The  two operand fractions  are  designated  as A,  B and  the bits as 
* The  half sum is  the  exclusive OR of the  two  input bits, (A, V B"). 

An, Bn, An-1, Bn-I, etc. GI i s  the  carry  into bit position n, which is 
the  carry out from bit n - 1. 
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carry  expression  can  be  rewritten as:’” 

e, = G,-1 v Pn-lCn-l 
C,, = G,-1 V Pn-lGn-1 V Pn-lPn-zCn-z 

C,, = G,-l V Pn-lGn-l V Pn--lPn-zGz-z 

v Pn-1Pn4Pn-3Cn-3 

The expansion  can continue as far as one  desires and one 
could  conceive of C, being  generated by one  large OR 

block  preceded by several AND blocks  (in fact n AND 

blocks-one for each  stage).  But it is obvious that the 
limiting factor would  be the circuit  fan-in.  Only a limited 
number of circuit  stages  can  be  connected  together  in 
this  manner. This technique is defined as carry look-ahead, 
and by cascading  different  levels  of look-ahead the tech- 
nique  can be  made to fit the circuit fan-in, fan-out limita- 
tions. 

For example,  assume that four bits can be arranged in 
this  manner, and that each four bits form a “group.” The 
adder is  now  divided into groups and the carries and 
propagates  can  be arranged for carry look-ahead  between 
groups just as they  were for look-ahead  between  bits. It 
is  possible to carry the concept even further and define a 
section as consisting of one or more  groups.  Now the 
adder has three levels  of carry look-ahead: the bit level 
of look-ahead, the group level, and the section level. 

The  fraction  adder of the floating-point add unit is a 
carry  look-ahead  adder. A group  is  made  up of four bits 

’ (one  digit) and two  groups  form a section.  Since it must 
be capable of adding 56 bits, the fraction  adder  consists 
of seven sections and 14 groups.  Each  pair of input bits 
generate the three bit  functions:  half-sum ( A  v B), bit 
carry generate ( A .  B) and bit propagate ( A  V B). These 
functions are combined to form the group generate and 
propagate which  in turn are combined to form the section 
generate and propagate. A typical group is shown  in 
Fig. 6 and the group and section look-ahead are shown  in 
Fig. 7. 

The high-order  sum  consists of nine  bits to include the 
end-around carry for subtraction and the overflow bit 
for addition. The end-around carry  is  needed for subtrac- 
tion  because the fraction which  is  complemented  may not 
be the subtrahend. This is illustrated by the example  given 
in the description of the characteristic  comparison. If the 
effective  sign  of  the instruction is minus (the exclusive OR 
of the sign  of the two fractions and the instruction is the 
effective  sign) the effective operation is subtract. Also, 
the high-order  bit (ninth bit of the high order section)  is 
set to a one, thus conditioning it for an end-around-carry. 
If there is no end-around-carry when the effective  sign 
is minus the adder output is complemented. 

Post-normalization 
Normalization or post-shifting takes place  when the inter- 
mediate  arithmetic  result out of the adder is changed to 
the final  result. The output of the fraction adder is checked 
for high-order  zero  digits and the fraction is  left-shifted 
until the high-order  digit  is  non-zero. 

The output of the fraction adder is  gated to the zero- 
digit  checker. The zero-digit  checker  is  simply a large 
decoder,  which  detects the number of leading  zero  digits, 
and provides the shift amount to the post-shifter.  Since 
this same amount must  be subtracted from the character- 
istic, the zero-digit  checker also must  encode the shift 
amount for the characteristic update adder. 

The implementation of the digit  post-shifter  is the same 
as the digit  pre-shifter  except for the fact that the post- 
shift  is a left-shift. The first  level  of the post-shifter  shifts 
each  of the 14 digits  left 0, 1 , 2 or 3 and the second level 
shifts  each  digit 0, 4, 8, or 12. The output of the second 
level  is  gated into the add unit fraction result  register,  from 
which the resultant fraction  is routed to the proper  floating- 
point accumulator. 

The characteristic update is  executed in parallel with 
the fraction  shift. The zero-digit  checker  provides the 
characteristic update adder  with the two’s  complement  of 
the amount by  which the characteristic  must  be  reduced. 
Since it is not possible to have a post-shift  greater than 13, 
the high-order three bits of the characteristic  can  only  be 
changed by carries which ripple from the low order four 
bits. The update adder makes  use of this fact to reduce 
the necessary hardware and speed up the operation. 

Floating-point multiply/divide unit 

Multiply and divide are complicated operations. How- 
ever, two of the original design  goals  were to select an 
algorithm for each operation such that (1) both opera- 
tions could  use  common hardware, and (2) improve- 
ment in execution time could  be  achieved which would 
be  comparable to  that achieved in the floating-point add 
unit. Several  algorithms  exist for each instruction which 
make the first  design goal attainable. Unfortunately, the 
best of the algorithms  generally  used for divide are not 
capable of providing an improvement in execution  com- 
parable to the improvement  achievable by those used 
for multiply. The algorithm developed for divide in the 
Model 91 uses  multiplication as the basic operator. Thus, 
common hardware is  used, and comparable improvement 
in the execution  time  is  achieved. 

In order to give a clear,  consistent treatment to both 
instructions,  this  section  discusses the multiply  algorithm 
and hardware implementation  first.  Then the divide  algo- 
rithm is  discussed  separately.  Finally, it is shown  how 
divide  utilizes the multiply  execution hardware and the 
hardware which  is unique to the execution  of  divide is 
described. 41 
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Figure 6 Fraction adder, section 1 (high-order). 
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Multiply algorithm plementing to allow subtraction as well as addition can 

tion, and the time required is dependent on the number of An  integer in any number system  may  be written in 

additions required.'.' A zero bit in the multiplier results in the form: 
adding a zero word to the  partial product. Therefore, 
because shifting is a faster operation than  add,  the execu- anbn f an-lbn-l f ' f + 
tion time can be decreased by shifting  over a zero or a 
string of zeros. Any improvement in the multiply execution  where 
beyond this point is not obvious. However, certain proper- 
ties of the binary number system combined with  corn- 0 < a < b - 1, and b = base of the number system 

Computers usually  execute multiply by repetitive ad&- be used to reduce the nUlnber of necessary additions* 
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Figure 7 Fraction  adder,  carry  look-ahead. 
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One of the properties of numbering systems  which is 
particularly interesting in  multiply  is that an integer can 
be rewritten as shown  below. 

a,,b" + an-lbn"l f + akbk + + an-,bn-", 

where 

ak = b - 1 for any k .  

In the binary number system ak can take only the values 
0 and 1. Thus, using the above property, a string of 1's 
can be skipped by subtracting at the  start of the string 

CF7 
SUB  SUM TRUGT 

GEN ADDER - TO ADDER S U M  LATCH 1 GATE TRUE  SUM , ' I  
m+KG-l@ SUM  TRUGAT 

SUB 
CF7 

SUM COMPGT 
GEN ADDER 

- 
TO ADDER SUM  LATCH 
GATE COMPLEMENT  SUM 

and adding at the end of the string: 

m I n  = 26 + 25 + 24 = 27 - 24, 

112,, = 11 1000, = 10000000, - 1 0 0 0 0 2 .  

Therefore, a string of 1's in the multiplier can be reduced 
from an addition for each 1 in the string to a subtraction 
for  the first 1 in the string, shift the partial product one 
position for each 1 in  the string, and  an addition for the 
last 1 in the string. 43 
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