
S. F. Anderson

J. G. Earle

R. E. Goldschmidt

D. M. Powers

The IBM System/360 Model 91:
Floating-point Execution Unit

Abstract: The principal requirement for the Model 91 floating-point execution unit was that it be designed to support the instruction-
issuing rate of the processor. The chosen solution was to develop separate, instruction-oriented algorithms for the add, multiply, and
divide functions. Linked together by the floating-point instruction unit, the multiple execution units provide concurrent instruction
execution at the burst rate of one instruction per cycle.

Introduction

The instruction unit of the IBM System/360 Model 91 is
designed to issue instructions at a burst rate of one in-
struction per cycle, and the performance of floating-point
execution must support this rate. However, conventional
execution unit designs cannot support this level of per-
formance. The Model 91 Floating-point Execution Unit
departs from convention and is instruction-oriented to
provide fast, concurrent instruction execution.

The objectives of this paper are to describe the floating-
point execution unit. Particular attention is given to the
design of the instruction-oriented units to reveal the tech-
niques which were employed to match the burst instruction
rate of one instruction per cycle. These objectives can
best be accomplished by dividing the paper into four
sections-General design considerations, Floating-point
terminology, Floating-point add unit, and Floating-point
multiplyldivide unit.

The first section explains how the desire for concurrent
execution of instructions has led to the design of multiple
execution units linked together by the floating-point in-
struction unit. Then the concept of instruction-oriented
units is discussed, and its impact on the multiplicity of
units is pointed out. It is shown that, with the instruction-
oriented units as building blocks and the floating-point
instruction unit as the “cement,” an execution unit evolves
which rises to the desired performance level.

The section on floating-point terminology briefly reviews
the System/360 data formats and floating-point definitions.

34 The next two sections describe the design of the instruc-

tion-oriented units. The first of these is the floating-point
add unit description which is divided into two sub-sections,
Algorithm and Implementation. In the algorithm sub-
section, the complete algorithm for execution of a floating
add/subtract is considered with emphasis on the dif-
ficulties inherent in the implementation. Since the add
unit is instruction-oriented, (i.e., only add-type instructions
must be considered), it is possible to overcome the in-
herent difficulties by merging the several steps of the
algorithm into three hardware areas. The implementation
section describes these three areas, namely, characteristic
comparison and pre-shifting, fraction adder, and post-
normalization.

The last section describes the floating-point multiply/di-
vide unit. This section describes the multiply algorithm and
its implementation first, and then the divide algorithm
and its implementation. The emphasis of the multiply
algorithm sub-section is on recoding the multiplier and
the usefulness of carry-save adders. In the implementation
sub-section the emphasis is on the iterative hardware which
is the heart of the multiply operation. An arrangement of
carry-save adders is shown which, when pipelined by add-
ing temporary storage platforms, has an iteration repetition
rate of fifty Mc/sec. The divide algorithm is described next
with emphasis on using multiplication, instead of sub-
traction, as the iterative operator. The discussion of divide
implementation shows how the existing multiply hard-
ware, plus a small amount of additional circuitry, is used
to perform the divide operation.

IBM JOURNAL JANUARY 1967

Figure 1 Floating-point execution unit capable of concurrent execution.

General design considerations

The programs considered “typical” by the user of high-
performance computers are floating-point oriented. There-
fore, the prime concern in designing the floating-point
execution unit is to develop an overall organization which
will match the performance of the instruction unit. How-
ever, the execution time of floating-point instructions is
long compared with the issuing rate of these instructions by
the instruction unit. The most obvious approach is to
apply a faster technology and with special design tech-
niques reduce the execution time for floating-point. But
a study of many “typical” floating point programs re-
vealed that the execution time per instruction would have
to be 1 to 2 cycles in order to match the performance3 of the
instruction unit.* Conventional execution unit design,
even with state-of-the-art algorithms, will not provide
these execution times.

Another approach considered was to provide execution
concurrency among instructions; this obviously would re-
quire two complete floating-point execution units.+ An
attendant requirement would be a floating-point instruc-
tion unit. This unit is necessary to sequence the operands
from storage to the proper execution unit; it must buffer
the instructions and assign each instruction to a non-busy
execution unit. Also, since the execution time is not the
same for all instructions the possibility now exists for
”_

* Even though the burst rate of the instruction unit is one instruction
per cycle, it is not necessary to execute at the same rate.

t Since two complete execution units me necessary for Concurrent
execution, the cost-performance factor is important. Analysis showed
that execution times of three cycles for add and seven cycles for multi-
ply were reasonable expectations.

out-of-sequence execution, and the floating-point in-
struction must insure that executing out of sequence
does not produce incorrect results.* The organization
for an execution unit capable of concurrent execution is
shown in Fig. 1. Buffering and sequence control of all
instructions, storage operands, and floating-point accu-
mulators are the responsibility of the floating-point execu-
tion unit. Each of the execution units is capable of execut-
ing all floating-point instructions.

One might be led to believe that this organization is a
suitable solution in itself. If multiply can be executed
in seven cycles and two multiplies are executed simul-
taneously, then the effective execution time is 3.5 cycles.
Similarly, for add the execution time would go from three
cycles to 1.5 cycles. However, the operating delay of the
floating-point instruction unit must be considered, and it
is not always possible to execute concurrently because of
the dependence among instructions. When these problems
are considered the effective execution time is close to three
cycles per instruction, which is not sufficient. A third
execution unit would not help because the complexity of
the floating-point instruction unit increases, and the
amount of hardware becomes prohibitive.

The next solution to be considered was to improve the
execution time of each instruction by employing faster
algorithms in the design of each execution unit. Obviously
this would increase the hardware, but since the circuit

* Dependence among instructions must be controlled. If instruction
n + 1 is dependent on the result of instruction n instruction n + 1
must not be allowed to start until instruction n is’completed. 35

MODEL 91 FLOATING-POINT EXECUTION

Table 1 Floating-point instructions executed by floating-point execution unit.

Condition Arithmetic
Type Znstruction code Floating-point exceptions* unit

RR-RX Load (S/L) NO FLIU
RR Load and Test (S/L) YES FLIU
RX Store (S/L) NO FLIU
RR Load Complement (S/L) YES ADD
RR Load Positive (S/L) YES ADD
RR Load Negative (S/L) YES ADD
RR-RX Add Normalized (S/L) YES U, E, LS ADD
RR-RX Add Unnormalized (S/L) YES E, LS ADD
RR-RX Subtract Normalized (S/L) YES U, E, LS ADD
RR-RX Subtract Unnormalized (S/L) YES E, LS ADD
RR-RX Compare (S/L) YES ADD
RR Halve (S/L) NO ADD
RR-RX Multiply NO U, E M /D
RR-RX Divide NO U, E, FK M/D

Exceptions :
U-Exponent-underflow exception

LS-Significance exception
E-Exponent-overflow exception

FK-Floating Point Divide Exception

delay is a function not only of the circuit speed but also of
the number of loads on the input net and the length of
the interconnection wiring, more hardware may not make
the unit f a ~ t e r . ~ These two factors-the desire for faster
execution of each instruction and the size sensitivity of the
circuit delay, have produced a concept which is unique to
the organization of floating-point execution units, and
which was adopted for the Model 91 : the concept of using
separate execution units for different instruction types.
Faster execution of each instruction can be achieved if
the conventional execution unit is separated into arithme-
tic units designed to execute a subset of the floating-point
instructions instead of the entire set. This conclusion may
not be obvious, but a unit designed exclusively for a class
of similar instructions can execute those instructions faster
than a unit designed to accommodate all floating-point
instructions. The control sequences are shorter and less
complex; the data flow path has fewer logic levels and re-
requires less hardware because the designer has more free-
dom in combining serial operations to eliminate circuit
levels; the circuit delay per level is faster because less hard-
ware is required in the smaller, autonomous units. To
implement the concept in the Model 91, the floating-point
instruction set was separated into two subsets: add and
multiply/divide. Table 1 shows a list of the instructions
and identifies the unit in which each instruction is executed.
With this separation, an add unit which executed all add
class instructions in two cycles, and a multiply/divide unit
which executed multiply in six cycles and divide in eighteen
cycles, were designed.

36 The use of this concept somewhat changes the character

of concurrent execution. It is possible to have concurrent
execution with one execution unit-Le., two arithmetic
units, add and multiply/divide. The performance is not
quite as good as that attainable using two execution units,
but less hardware is required for the implementation.
Therefore, more arithmetic units can be added to improve
the performance. First, two add units and two multiply/di-
vide units were considered. But the floating-point instruc-
tion unit can assign only one instruction per cycle.
Therefore, since an add operation is two cycles long, two
add units could be replaced by one add unit if a new add
class instruction could be started every cycle. This would
introduce still another example of concurrent execution:
concurrent execution within an arithmetic unit.

Such concurrency within a unit is facilitated by the
technique of pipelining. If a section of combinatorial logic,
such as the logic to execute an add, could be designed with
equal delay in all parallel paths through the logic, the
rate at which new inputs could enter this section of logic
would be independent of the total delay through the logic.
However, delay is never equal; skew is always present and
the interval between input signals must be greater than the
total skew of the logic section. But temporary storage plat-
forms can be inserted which will separate the section of
combinatorial logic into smaller synchronous stages. Now
the total skew has been divided into smaller pieces; only the
skew between stages has to be considered. The interval
between inputs has decreased and now depends on the
skew between temporary storage platforms. Essentially
the temporary storage platform is used to separate one
complete job, such as an add, into several pieces; then

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

several jobs can be executed simultaneously. Thus, inputs
can be applied at a predetermined rate and once the pipe-
line is full the outputs will match this rate.

The technique of pipelining does have practical limits,
and these limits differ for each application. In general
the rate at which new inputs can be applied is limited by
the logic preceding the pipeline (e.g., add is limited to one
instruction per cycle by the floating-point instruction unit)
or by the rate at which outputs can be accepted. Also,
both the rate of new inputs and the length of the pipeline
are limited by dependencies among stages of the pipeline
or between the output and successive inputs (e.g., the
output of one add can become an input for the next).

The add unit requires two cycles for execution and is
limited to one new input per cycle. Thus pipelining allows
two instructions to be in execution concurrently, thereby
increasing the efficiency with a small increase in hardware.

Further study of pipelining techniques would indicate
that a three-cycle multiply and a twelve-cycle divide are
possible. Here the technique of pipelining is used to speed
up the iterative section of the multiply which is critical to
multiply/divide execution. (This is discussed in detail in
the section on the multiply/divide unit.)

The execution unit would consist at this point of a
floating-point instruction unit, an add unit which could
start an instruction every cycle, and a multiply/divide
unit which would execute multiply in three cycles and
divide in twelve cycles. However the performance still
would not match the instruction unit. The execution
times would be adequate but the units would spend con-
siderable time waiting for operands. Therefore, instead of
duplicating the arithmetic unit (which is expensive) extra
input buffer registers have been added to collect the
operands and necessary instruction control information.
When both operands are available, the control information
is processed and a request made to use an arithmetic unit.
These registers are referred to as "reservation stations."
They can be and are treated as independent units.

The final organization is shown in Fig. 2. It consists of
three parts: the floating-point instruction unit; the floating-
point add unit; and the floating-point multiply/divide unit.
Another paper in this series3 explains the floating-point
instruction unit in detail. The problems involved and both
the considered solutions and the implemented solutions
are discussed. The floating-point add unit has three reser-
vation stations and, as stated above, is treated as three
separate add units, Al, A2 and A3. The floating-point
multiply/divide unit has two reservation stations, M/D1
and M/D2. The last two sections of this paper describe
the design of these two units in detail.

Floating-point terminology

The reader is assumed to be familiar with System/360
architecture and terminology.' However, the floating-point

TO
VIA

DATA

ST(
s1
BI

i
A[

I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I

I
I
L

)RAGE
rORE
JFFERS TO FX

FR3M
STORAGE

INSTR UNIT t "1 _""" 1""

I
FLOATING.

POINT
OP STACK

(FLOS)
FLOATING-

BUFFERS CONTROLS
(F W

EXECUTION UNITS

CONTROLS

RES STAT 1 RES STAT 2 RES STAT 3

A1 A 2 A3

TWO-STAGE
FLOATING-

POINT

"""

PIPELINE

RESULT .
COMMON R

PT

ET%: RES STAT 1 RES STAT 2 I

ITERATION
MULTIPLY

I PROPAGATE

6 RESULT

1
BUS

Figure 2 Overall organization of floating-point unit.

data format and terminology will be briefly reviewed here.
Floating-point data occupy a fixed-length format, which

may be either a full-word short format or a double-word
format :

Short Floating-point Binary Format

Sign Characteristic Fraction

0 1 _ _ _ _ _ 7 8 _ _ _ _ 31

Long Floating-point Binary Format

Sign Characteristic Fraction

0 1 _ _ _ _ 7 8 _ _ _ _ _ 63

The first bit(s) in either format is (are) the sign bit(s). The
subsequent seven bit positions are occupied by the charac- 37

MODEL 91 FLOATING-POINT EXECUTION

38

FLR BUS COMMON DATA BUS

CHARACTERISTIC (8 BITS) FLB BUS

CHARACTERISTIC COMPARISON
AND PRE4HIFTING

\ FRACTION
ADDER /

FRACTION ADDER

I R E S V L T I
POST. NORMALIZATION

CHARACTERISTIC 7- + COMMON RESULT BUS

Figure 3 Floating-point add data flow.

teristic. The fraction consists of six hexadecimal digits
for the short format or 14 hexadecimal digits for the long.

The radix point of the fraction is assumed to be im-
mediately to the left of the high-order fraction digit. To
provide the proper magnitude for the floating-point num-
ber, the fraction is considered to be multiplied by a power
of 16. The characteristic portion, bits 1-7 of both floating-
point formats, indicates this power. The characteristic is
treated as an excess 64 number with a range from -64
through "63 corresponding to the binary expression of
the values 0-127.

Both positive and negative quantities have a true frac-
tion, the difference in sign being indicated by the sign
bit. The number is positive or negative accordingly as the
sign bit is zero or one.

A normalized floating-point number has a non-zero
high-order hexadecimal fraction digit. To preserve maxi-
mum precision in subsequent operation, addition, sub-
traction, multiplication, and division are performed with
normalized results. (Addition and subtraction may also
be programmed to be performed with unnormalized re-
sults. The operands for any floating-point operation can
be either normalized or unnormalized.)

Floating-point add unit

The challenge in the design of the add unit was to minimize
the number of logical levels in the longest delay path.
However, the sequence of operations necessary for the
execution of a floating-point add impedes the design goal.

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

Consider the following operations:

(a) Since the radix point must be aligned before an add
can proceed, the characteristics of the two operands
must be compared and the difference between them
established.

(b) This difference must be decoded into the shift amount,
and the fraction with the smaller characteristic shifted
right a sufficient number of positions to make the
characteristics equal.

(c) Since subtraction is to be performed by forming the
two's complement of one of the fractions and then
adding the two fractions in the fraction adder, one of
the fractions must pass through true/complement logic.

(d) The two operand fractions are added in a parallel
adder. The carries must propagate from the low order
end to the high order end.

(e) Because of subtraction, the output must provide for
both the true sum and the complement sum, depending
on the high-order carry.

(f) If the system architecture calls for left justification or
normalized operation, the result out of the adder must
be checked for high-order zeros and shifted left to
remove these zeros.

(g) The characteristic must be reduced by the amount of
left shift necessary to normalize the resultant fraction.

(h) The resultant operand must be stored in the proper
accumulator.
The above sequence of operations implies a series of

sequential execution stages, each of which is dependent on
the output of the previous stage. The problem then, is to
arrange, change and merge these operations to provide
fast, efficient execution for a floating-point add.

None of the steps can be eliminated. Each step is re-
quired in order to execute add; but the steps can be merged
so that the interface between them is eliminated,* and
each step can be changed to provide only the necessary
information to the next stage, For example, the long data
format consists of 14 hexadecimal digits; therefore any
difference between the two characteristics which is greater
than 14 will result in an all zero fraction. This means that
the characteristic difference adder need not generate a sum
for the high-order three bits. Instead, if the difference is
greater than 14, a shift of 15 is forced. As a result, the
characteristic difference adder is faster and less expensive.

The add unit algorithm is separated into three parts:
characteristic comparison and pre-shifting, fraction adder,
and post-normalization (Fig. 3). The first section, the
characteristic comparison and pre-shifting operation,
merges the first three operations from the sequence given
above; the second section-the fraction adder-merges
the next two operations; the final section-post normaliza-

*Levels are used to encode the output of one step, which is subse-

these levels.
quently decoded in the next step. Merging the two steps will eliminate

___-

CA > c, c , - 1 1 1 1 1 0 0

1 1 1 1 1 0 0 c,
0 0 1 0 1 1 1 c,

-

1 HOT ONE

(RESULT IS TRUE) 1 1 1 0 1 1 1 1 C,- C,

C,=l 1 0 1 0 0 0

(RESULT
IS COMPLEMENT) 0 1 1 0 1 1 0 0

1 HOT ONE

COMP. RESULT 0 0 1 0 0 1 1

MUST ADD HOT ONE 1
0 0 1 0 1 0 0 c,-c,

-
C, c C, (END-AROUND CARRY)

1 1 0 1 0 0 0 c,
0 0 0 0 0 1 1 c,

(NO CARRY) 0 1 1 0 1 0 1 1

COMPLEMENT 0 0 1 0 1 0 0 CORRECT RESULT
"""~"~"""""~""~""~"~"" -"-

Figure 4 Examples of exponent arithmetic.

tion-merges the final three operations. The hardware
implementation of each of these three sections is discussed
below.

Implementation

Characteristic comparison and pre-shifting

The first stage of execution for all two-operand instructions
(floating-point add, subtract, and compare) is to compare
the characteristics and establish the magnitude of the
difference between them. The characteristic (C,) of one
operand is always subtracted from the characteristic
(C,) of the other operand (CA - C,). Characteristic B
is always complemented as it is gated in at the reservation
station.

If the output of the characteristic difference adder is
the true sum or the complement of the true sum, the
output can be decoded directly at the pre-shifter. But the
adder always subtracts CB from CA and if CB > C, the
sum would be negative. Therefore, to eliminate the pos-
sibility of having to add a 1 in the low order position
and complement when C, is greater than CA, an "end-
around-carry'' adder is used. This is shown by the example
in Fig. 4.

The characteristic comparison can result in two states-
CA > CB or CB > CA. If CA > C,, there is a carry out
of the high order position of the characteristic differ-
ence adder, and the carry is used to gate the fraction of
operand B to the pre-shifter. The true sum output of the
characteristic difference adder is the amount that the
fraction must be shifted right to make the characteristics 39

MODEL 91 FLOATING-POINT EXECUTION

INPUTS DIGITS

0 0 0 0 0 0
1 1 1 1 1 1

2 2 2 2 2
3 3 3 3

4 4 4
5 5

6 FIRST LEVEL
SHF RIGHT 0 SECOND LEVEL
SHF RIGHT 1 SHF RIGHT 0
SHF RIGHT 2 SHF RIGHT 4
SHF RIGHT 3 SHF RIGHT 8

SHF RIGHT12

""

"- "" - - - - - -" -
"

Figure 5 Digit pre-shifter.

equal. If C, > CA, there is no carry out of the high order
position of the characteristic difference adder, and the
absence of a carry is used to gate the fraction of operand
A to the pre-shifter. In this case the complement of the
sum output of the characteristic difference adder is the
amount that the fraction must be shifted right to make the
characteristics equal. In both cases the second operand
fraction (the one with the larger characteristic) is gated to
the true-complement input of the fraction adder.

The characteristic of the unshifted fraction becomes the
resultant characteristic. It is gated to the characteristic-
update adder, and after updating, if necessary, it is gated
to the accumulator specified by the instruction.

The output of the characteristic difference adder is
decoded by the pre-shifter and the proper fraction shifted
right the necessary number of positions. The pre-shifter
is a parallel digit-shifter which shifts each of the 14 digits
right any amount from zero to fifteen. The decode of the
shift amount is designed into each level, thereby eliminating
serial logic levels for decoding.

The pre-shifter consists of two circuit levels. The first
level shifts a digit right by 0, 1, 2 or 3 digit positions. The
second level shifts a digit right by 0, 4, 8, or 12 digit
positions. Thus, by the proper combination of these
amounts any right digit shift between and including 0 and
15 can be executed. Figure 5 shows an example of the
pre-shifter.

The un-shifted fraction is gated to the true/complement
40 gates of the adder. Here the fraction is gated unchanged

2
3
4
5
6
7

9
8

10

2
3
4
5
6
7
8
9
10
11

2
3
4

6
5

7
8
9
10

12
11

if the effective operation is ADD and complemented if the
effective operation is SUBTRACT. The true/complement
gating is overlapped with the pre-shifter on a time basis.
The output of both the true/complement logic and the
pre-shifter are the inputs to the fraction adder.

Fraction adder

Most of the time required for binary adders is carry prop-
agation time. Two operands must be combined and the
carries allowed to ripple from right (low order) to left
(high order). The usual method of finding the sum is to
combine the half sum* of bit n (higher order) with the
carry from bit n - 1 (S, = A , Q Bn v en).+ The carry
(C,) into bit position n is also a three term expression
which includes the carry into bit position n - 1

If the carry term is rearranged to read

two new terms can be defined which separate the carry
into two parts-generated carry, and propagated carry.
The generated carry (Gn-l) is defined as An-1. Bn-l, and
the carry propagate function (often abbreviated to simply
propagate or PnJ is defined as An-1 V Bn-l. Now the

i The two operand fractions are designated as A, B and the bits as
* The half sum is the exclusive OR of the two input bits, (A, V B").

An, Bn, An-1, Bn-I, etc. GI i s the carry into bit position n, which is
the carry out from bit n - 1.

ANDERSON, EARLE, GOLDSCHMIDT AND POWERS

carry expression can be rewritten as:’”

e, = G,-1 v Pn-lCn-l
C,, = G,-1 V Pn-lGn-1 V Pn-lPn-zCn-z

C,, = G,-l V Pn-lGn-l V Pn--lPn-zGz-z

v Pn-1Pn4Pn-3Cn-3

The expansion can continue as far as one desires and one
could conceive of C, being generated by one large OR

block preceded by several AND blocks (in fact n AND

blocks-one for each stage). But it is obvious that the
limiting factor would be the circuit fan-in. Only a limited
number of circuit stages can be connected together in
this manner. This technique is defined as carry look-ahead,
and by cascading different levels of look-ahead the tech-
nique can be made to fit the circuit fan-in, fan-out limita-
tions.

For example, assume that four bits can be arranged in
this manner, and that each four bits form a “group.” The
adder is now divided into groups and the carries and
propagates can be arranged for carry look-ahead between
groups just as they were for look-ahead between bits. It
is possible to carry the concept even further and define a
section as consisting of one or more groups. Now the
adder has three levels of carry look-ahead: the bit level
of look-ahead, the group level, and the section level.

The fraction adder of the floating-point add unit is a
carry look-ahead adder. A group is made up of four bits

’ (one digit) and two groups form a section. Since it must
be capable of adding 56 bits, the fraction adder consists
of seven sections and 14 groups. Each pair of input bits
generate the three bit functions: half-sum (A v B), bit
carry generate (A . B) and bit propagate (A V B). These
functions are combined to form the group generate and
propagate which in turn are combined to form the section
generate and propagate. A typical group is shown in
Fig. 6 and the group and section look-ahead are shown in
Fig. 7.

The high-order sum consists of nine bits to include the
end-around carry for subtraction and the overflow bit
for addition. The end-around carry is needed for subtrac-
tion because the fraction which is complemented may not
be the subtrahend. This is illustrated by the example given
in the description of the characteristic comparison. If the
effective sign of the instruction is minus (the exclusive OR
of the sign of the two fractions and the instruction is the
effective sign) the effective operation is subtract. Also,
the high-order bit (ninth bit of the high order section) is
set to a one, thus conditioning it for an end-around-carry.
If there is no end-around-carry when the effective sign
is minus the adder output is complemented.

Post-normalization
Normalization or post-shifting takes place when the inter-
mediate arithmetic result out of the adder is changed to
the final result. The output of the fraction adder is checked
for high-order zero digits and the fraction is left-shifted
until the high-order digit is non-zero.

The output of the fraction adder is gated to the zero-
digit checker. The zero-digit checker is simply a large
decoder, which detects the number of leading zero digits,
and provides the shift amount to the post-shifter. Since
this same amount must be subtracted from the character-
istic, the zero-digit checker also must encode the shift
amount for the characteristic update adder.

The implementation of the digit post-shifter is the same
as the digit pre-shifter except for the fact that the post-
shift is a left-shift. The first level of the post-shifter shifts
each of the 14 digits left 0, 1 , 2 or 3 and the second level
shifts each digit 0, 4, 8, or 12. The output of the second
level is gated into the add unit fraction result register, from
which the resultant fraction is routed to the proper floating-
point accumulator.

The characteristic update is executed in parallel with
the fraction shift. The zero-digit checker provides the
characteristic update adder with the two’s complement of
the amount by which the characteristic must be reduced.
Since it is not possible to have a post-shift greater than 13,
the high-order three bits of the characteristic can only be
changed by carries which ripple from the low order four
bits. The update adder makes use of this fact to reduce
the necessary hardware and speed up the operation.

Floating-point multiply/divide unit

Multiply and divide are complicated operations. How-
ever, two of the original design goals were to select an
algorithm for each operation such that (1) both opera-
tions could use common hardware, and (2) improve-
ment in execution time could be achieved which would
be comparable to that achieved in the floating-point add
unit. Several algorithms exist for each instruction which
make the first design goal attainable. Unfortunately, the
best of the algorithms generally used for divide are not
capable of providing an improvement in execution com-
parable to the improvement achievable by those used
for multiply. The algorithm developed for divide in the
Model 91 uses multiplication as the basic operator. Thus,
common hardware is used, and comparable improvement
in the execution time is achieved.

In order to give a clear, consistent treatment to both
instructions, this section discusses the multiply algorithm
and hardware implementation first. Then the divide algo-
rithm is discussed separately. Finally, it is shown how
divide utilizes the multiply execution hardware and the
hardware which is unique to the execution of divide is
described. 41

MODEL 91 FLOATING-POINT EXECUTION

42

ANDERSON.

BIT A7 -
BIT 87 -

BIT HALF SUM
BIT PROPAGATES
BIT GENERATES

PROPAGATE
GENERATE

HALF SUM 7

GATE

GATE COMP
~~

GATE TRUE
TRUESUM

BIT A6-
BIT 8 6 -

HALF SUM
PROPAGATE - P6

GENERATE __ G6
COMPSUM

GATE COMP ___(1

BIT A5-
BIT E5-

HALF SUM
PROPAGATE - P5

GENERATE - G5

~

T - TRUESUM
BIT A4-

-P4 PROPAGATE BIT 84-
HALF SUM ~

GENERATE - G4 + G7P6P5+G6P5

G5+CFlP7P6P5 e COMPSUM
C-

T ~-
BIT A3-

- G3 GENERATE
"3 PROPAGATE BIT 83-

HALF SUM
- - TRUESUM

-&SUM
BIT 3

PGPCFI+GG2 - - COMPSUM
C-

BIT A2- HALF SUM
BIT 82-

" G 2 GENERATE
-P2 PROPAGATE

TRUESUM

GG2P3+G3

CFlPG2P3 - COMPSUM

-7
BIT A1 -

-PI PROPAGATE BIT B1 -
HALF SUM

TRUESUM -
~

GENERATE " G 1 GGZP3PP+G3P2

GZ+CFlPGZP3P2
+ COMPSUM -

- TRUESUM
BIT AO- HALF SUM

BIT BO- PROPAGATE -PO GG2P3P2P1

Gl+CFIP3P2Pl

G3PZPl+G2P1

C

HIGH ORDER

GENERATE -GO
-k

t - COMPSUM

Figure 6 Fraction adder, section 1 (high-order).

NOTE.
4 BITS = 1 GROUP
8 BITS = 1 SECTION

AND GROUP PROPAGATE
GG AND PG ARE GROUP GENERATE

AN0 SECTION PROPAGATE
GS AN0 PS ARE SECTION GENERATE

P AND G ARE BIT GENERATE
ANDBIT PROPAGATE

TRUE AND COMPLEMENT GROUP PROPAGATE
BIT SUM GENERATION GROUP 2

TRUESUM SUM LATCH LOW ORDER '' qTk PG2

COMPSUM

P5
P4

GROUP PROPAGATE

'' gyk PGL

GROUP 1

P1
PO

GROUP GENERATE
GROUP 2

G7P6P5P4
G6P5P4 G5P4 qTk GG2

G4

GROUP GENERATE
GROUP 1

G3P2PIPO
GPPlPO G I P O a T F G G 1

GO

BITS A SOURCE IS PRE-SHIFTER
BITS B SOURCE IS T/C GATES
CF1, GATE TRUE, AND GATE COMP
SOURCE IS CARRY LOOK-AHEAD

Multiply algorithm plementing to allow subtraction as well as addition can

tion, and the time required is dependent on the number of An integer in any number system may be written in

additions required.'.' A zero bit in the multiplier results in the form:
adding a zero word to the partial product. Therefore,
because shifting is a faster operation than add, the execu- anbn f an-lbn-l f ' f +
tion time can be decreased by shifting over a zero or a
string of zeros. Any improvement in the multiply execution where
beyond this point is not obvious. However, certain proper-
ties of the binary number system combined with corn- 0 < a < b - 1, and b = base of the number system

Computers usually execute multiply by repetitive ad&- be used to reduce the nUlnber of necessary additions*

, EARLE, GOLDSCHMIDT AND POWERS

SECTION CARRY IN
SECTION GEN AND PROP -

G G l 1 qTk GS6

P G l l
PS6

GG7 q<k GS4

PG7
PS4

GG3
PG3

PS2

NOTE:
GG IS GROUP GENERATE
PG IS GROUP PROPAGATE
P; IS SECTION PROPAGATE
GS IS SECTION GENERATE
SUB IS AN EFFECTIVE SUBTRACT OPERATION

Figure 7 Fraction adder, carry look-ahead.

SUBGSZPSlPS7
SUBGSlPS7

SUBGS4PS3PSZPSlPS7 SUBGS3PSZPSlPS7 GS7 3 SECT '{iRY k C F 6 (CARRY IN TO SECTION 6)

SUBGSWSSPS4PS3PSZPSlPS7
SUBGSSPS4PS3PSZPSlPS7

G S 7 k 6 3 ~:
SUBGS3PSZPSlPS7PS6 SECT

SUBGSZPSlPS7PS6

SUBGSSPS4PS3PSZPSlPS7PS6
SUBGS4PS3PSZPSlPS7PS6

SUBGSlPS7PS6 CARRY
CF5 (CARRY I N TO SECTION 5)

GS6% 3 ;: t SUBGSlPS7'PSBPSS
GS7PS6PS5

SUBGS4PS3PSZPSlPS7PS6PS5
SUBGS3PSZPSIPS7PS6PS5

CARRY
SUBGSZPSIPS7PS6PS5 SECT

CF4 (CARRY IN TO SECTION 4)

GS6PS5PS4 CARRY
GS5PS4

GS7Ps6PS5PS4

SUBGS3PSZPSlPS7PS6PS5PS4
SUBGSZPSlPS7PS6PSSPS4

GS4 3 :: SUBGSlPS7PS6PSSPS4 SECT
t CF3 (CARRY IN TO SECTION 3)

GS5PS4PS3
GS4PS3

GS6PS5PS4PS3 CARRY

SUBGSZPSlPs7PS6PSSPS4PS3

CF2 (CARRY I N TO SECTION 2)

GS4PS3PS2
GS3PS2

GS5PS4PS3PS2 CARRY CF1 (CARRY IN TO SECTION 1)

SUBGSlPS7PS6PSSPS4PS3PSZ A END
CARRY END CARRY T O SIGN CTL

SUBGSl
SUBGSPPSI

SUBGSBPSPPSI
SUBGS4PS3PSZPSl CARRY

SUBGS7PS6PS5PS4PS3PSZPSl

~ v, +FRACTION
OVERFLOW
BIT

CF7 (CARRY I N TO SECTION 7)

One of the properties of numbering systems which is
particularly interesting in multiply is that an integer can
be rewritten as shown below.

a,,b" + an-lbn"l f + akbk + + an-,bn-",

where

ak = b - 1 for any k .

In the binary number system ak can take only the values
0 and 1. Thus, using the above property, a string of 1's
can be skipped by subtracting at the start of the string

CF7
SUB SUM TRUGT

GEN ADDER - TO ADDER S U M LATCH 1 GATE TRUE SUM , ' I
m+KG-l@ SUM TRUGAT

SUB
CF7

SUM COMPGT
GEN ADDER

-
TO ADDER SUM LATCH
GATE COMPLEMENT SUM

and adding at the end of the string:

m I n = 26 + 25 + 24 = 27 - 24,

112,, = 11 1000, = 10000000, - 1 0 0 0 0 2 .

Therefore, a string of 1's in the multiplier can be reduced
from an addition for each 1 in the string to a subtraction
for the first 1 in the string, shift the partial product one
position for each 1 in the string, and an addition for the
last 1 in the string. 43

MODEL 9 1 FLOATING-POINT EXECUTION

