32

Copyright ©1959 by The Institute of Radio Engineers, Inc. (now The Institute of Electrical
and Electronics Engineers, Inc.)

Reprinted, with permission, from IRE Trans. Electron. Comput. EC-8:330-334 (1959)

The CORDIC Trigonometric Computing Technique®

JACK E. VOLDERY

Summary—The COordinate Rotation DIgital Computer (CORDIC)
is a special-purpose digital computer for real-time airborne computa-
tion. In this computer, a unique computing technique is employed
which is especially suitable for solving the trigonometric relation-
ships involved in plane coordinate rotation and conversion from
rectangular to polar coordinates. CORDIC is an entire-transfer com-
puter; it contains a special serial arithmetic unit consisting of three
shift registers, three adder-subtractors, and special intesconnections.
By use of a prescribed sequence of conditional additions or sub-
tractions, the CORDIC arithmetic unit can be controlled to solve
either set of the following equations:

Y = K(¥ cos A + X sin \)
X' = K(XcosA ~ Ysin)),

* Manuscript received by the PGEC, May 25, 1959. Presented
;E stheg\s?zutem Joint Computer Conf., San Francisco, Calif.; March

, 1959, .

t Convair, a Div. of General Dynamics Corp., Fort Worth, Texas.
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R=K /X241 V8
0 = tan™ Y/X,

where K is an invariable constant, !

This special arithmetic unit is also suitable for other computations
such as multiplication, division, and the conversion between binary |
and mixed radix number systems, However, only the trigonometric §
algorithms used in this computer and the ingtrumentation of these }
algorithms are discussed in this paper. :

INTRODUCTION

HE CORDIC computing technique was de-§
Tveloped especially for use in a real-time digita»l\
computer where the majority of the computation‘;
involved the discontinuous, programmed solution of the
trigonometric relationships of navigation equations and
a high solution rate for the trigonometric relationships of



coordinate transformations. A prototype computer,
CORDIC I, based on this computing technique, has
been designed and constructed at Convair, Fort Worth.
Although CORDIC I may be classified as an entire-
transfer computer, its design is not based on the con-
ventional “pencil and paper” computing technique of
general-purpose computers.

FuNcTioNAL DESCRIPTION

For the sake of simplicity, the trigonometric opera-
tions in the CORDIC computer can be functionally de-
scribed as the digital equivalent of an analog resolver.
Similar to the operation of such a resolver, there are two
computing modes, ROTATION and VECTORING. In
the ROTATION mode, the coordinate components of a
vector and an angle of rotation are given and the co-
ordinate components of the original vector, after rota-
tion through the given angle, are computed. In the
second mode, VECTORING, the coordinate compo-
nents of a vector are given and the magnitude and
angular argument of the original vector are computed.
Similarly, as in the case of resolvers, the computing de-
vice of ROTATION plus feedback is employed in the
VECTORING mode. The original coordinates are ro-
tated until the angular argument is zero, so that the total
amount of rotation required is the negative of the orig-
inal argument, in which case the value of the X-com-
ponent is equal to the magnitude of the original vector.

In essence, the basic computing technique used in
both the ROTATION and VECTORING modes in
CORDIC is a step-by-step sequence of pseudo rotations
which resultin an over-all rotation through a given angle
(ROTATION) or result in a final angular argument of
zero (VECTORING).

It is necessary that the angular increments of rotation
be computed in a decreasing order. There are several
permissible values which may be chosen for the angular
magnitude of the first rotation step. The magnitude
actually chosen for the first increment is 90°. The ex-
pression for a set of coordinate components, ¥, and X,,
rotated through plus or minus 90° is simply

Y2= + X; = Ry sin (8; + 90°) m
Xy= F ¥, = R, cos (8, + 90°. 2

The first step is unique in that a perfect rotation step
is performed.

The rest of the computing steps can be clarified by
examining the relationships, involved in a typical rota-
tion step, which are shown in Fig. 1. Consider two given
coordinate components, ¥; and X; in the plane co-
ordinate system shown in the figure. In this discussion,
the quantity ¢ is equal to the number of the particular
step under consideration. The components, ¥; and X,
are associated with the sth step and describe a vector of
magnitude R; at an angle 8; from the origin according
to the relationship:

Y, = R, sin 6, 3)
X = R‘ (o0 2] 0;. (4)

AT man Sttt bttt YLD
1-(i»2)xi
[
Y pobe———
i
22y 24-2g
|
Yin—t——= I‘i"'
N
I --|z*"ﬂr.l-
- Jlﬁn‘!' L
Xig N K

Fig. 1—Typical computing step.

In Fig. 1, the angle «; is the special magnitude of rota-
tion associated with each computing step. The general
expression for a; where £> 1, is

a; = tan~! 2-(—2), 5)

The peculiar magnitude of each a; is such that a “rota-
tion” of coordinate components through +a; may be
accomplished by the simple process of shifting and
adding.

The two choices of positive or negative rotation are
shown in Fig. 1. The general expression for the rotated
components is

Y,'+1 = '\/1 + 2_’(‘—2)R.' sin (0.- i a,-)
= V. + 2760y, (6)
Xq.l = \/1 + 2-’(‘.—”R,' cos (0.— + a;)

= X; F 2760y, )

Note that, by restricting the angular rotation magnitude
to (5), the right-hand terms of (6) and (7) may be ob-
tained by two simultaneous shift-and-add operations.
This is the fundamental relationship upon which this
computing technique is based.

The computing action of adding (or subtracting) a
shifted value of X; to ¥; to obtain ¥Y,,, while simul-
taneously subtracting (or adding) a shifted value of Y,
to X; to obtain X;,, , is termed “cross-addition.”

While the expressions for Y1 and Xy, are not per-
fect rotations because of the increase in magnitude by
the terms under the radical, either of the two choices
of direction produces the same change in magnitude. If,
therefore, for each step, the coordinates are always ro-
tated through either a positive or pegative a;, then the
increase in magnitude may be considered as a constant.
This requirement precludes the choice of zero rotation
at any step. To identify the choice made in a particular
step, the 3 notation may be represented by the binary
operator +£; where £; can equal either 41 or —1. This
substitution produces the general expressions

Y“.; =\/1 + 273D R, sin (0. + E(d.)
Y+ £2-MX; ®

Xe1 = +/TF 275EDR, cos (6; + Eard)
= X — §2-VY, 9)
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where

£&i=+1or —1. (10)

Likewise, after the completion of the rotation step in
which the 141 terms are obtained, the 142 terms may
be computed from these terms with the results

Yia = V14 2736-D/f  23G-DR,

-sin (8; + tai + Eipreipr) (11)
Xipr = /14 27260 /1 | 22-DR;
-0s (0; -+ Eiri + Eivraigr). (12)

Similarly, the pseudo-rotation steps can be continued
through any finite, pre-established number of steps
without regard to the values assigned to {. Consider the
initial coordinate components Y, and X, where

Yl = R] sin 01
X = R;j cos 8.

(13)
(14)
By establishing the first and most significant step as a
rotation through +90°, and by establishing the number

of steps as #n, the expression for the final coordinate
components will be

Yo = [VT+ 29T F 278 - - - /T F Z509]R,
sin (01 + fian + baa + - - -+ Eran)

Xopy = [VI+279v/1 + 272 -« /1 4 2736-0]R,
cos (01 + b1n + b2z + - - - + Encn)

The increase in magnitude of the components for a par-
ticular value of n is a constant and will be represented
by the letter K. The value selected for n is a function
of the desired computing accuracy and can be a constant
for a particular computer. For example,

if n=24,
K = 1.646760255,

(15)

(16)

(17)

The necessary functional components and informa-
tion flow for instrumenting the cross-addition are asso-
ciated with the ¥ and X registers shown in Fig. 2.

It has not yet been shown how the prescribed se-
quence of rotation steps can be controlled to effect the
desired over-all rotation. By examination of (15) and
(16), it may be shown that, for a rotation of a set of co-
ordinate components ¥, and X, through a given angle
(as required in the ROTATION mode), it is necessary
to obtain the expressions

Y,.+1 = KR1 sin (01 + A)
X,H.g = KR] cos (01 + h).

(18)
(19)

To obtain the relationships expressed in (18) and (19),
it is required that

A= Elal + Eﬂai + c vt + Euan (20)

Y REGISTER

ANGLE REGISTE

LTI

ATR CONSTANTS
Fig. 2—CORDIC arithmetic unit.

ADDER-
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-§i

and, as explained previously, for VECTORING it is
required that

—0 = fian + £z + ¢ - o+ Enan. (21)

The sequences of (20) and (21) form a special radix
representation equivalent to the desired angle, \ or 6
where

a; = 90° (22)
az = tan™? 270 = 45° (23)
a; = tan~! 271 = 26,5° (24)
a; = tan~! 2-(-D), (25)

The a terms are referred to as ATR (Arc Tangent
Radix) constants, and are precomputed and stored in
the computer. The ¢ terms are referred to as ATR
digits and are determined during each operation.

In the CORDIC computer, the ATR digits are de-
termined sequentially, most significant digit first, and
are used to control the conditional action of the adder-
subtractors in the arithmetic unit. The following para-
graphs contain a description of the manner in which the
ATR code representation, ££:¢; - - - £,, can be deter-
mined for any given angle, \ or 6.

First, for any angle, \ or 0, there must be at least one
set of values for the £ operators that will satisfy (20) or
(21). Second, a simple technique must be available for
determining the ATR code digits that satisfy these
equations.

The following relationships are necessary and suf-
ficient for any sequence of radix constants to meet the
above requirements.

I)\orol _<_a|+az+aa+ "'+an+an
a; Lot ajgr+ o0+ an + an.

For the satisfaction of the stipulative equations [(10)
and (22)], it is required that X\ or 8 be represented i

—180° < A or 0 < + 180°.

(26)
@n 1

o8]

Eq. 28 imposes no special consideration if the two's
complement notation is used. :
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By employing an additional register and adder-
subtractor (identified in Fig. 2 as the angle register) the
relationship of (18) (ROTATION mode) can be instru-
mented by: 1) sensing the sign of the angle of ROTA-
TION (or remainder if £>1); and 2) either subtracting
or adding to the angle the ATR constant corresponding
to the particular step. In each step, the relationship in-
strumented is:

| = | [N] — o] (29)

Execution of the first step of the nulling sequence to
(26) results in

—a < M —m et ot an+ an (30)
Application of the relationships of (27) results in
M) =] 0] —ar] Sast et o - + an+ an (31)

Continuation of the nulling sequence through a, results
in

| Ans2] < an. (32)

Eq. (32) can be used to prove that the remainder in the
angle register converges to zero in the ROTATION
mode,

The sequence of operation signs used to null A to zero
is the negative of the equivalent ATR code for the ori-
ginal angle \;. More simply, the ATR code digit of each
step is equal to the sign of the quantity in the angle
register before each step. Therefore, simultaneously
with each nulling step in the angle register, the ATR
code digit may be used to control the cross-addition
step in the ¥ and X registers (shown in Fig. 2) to effect
a rotation of components through an equal angular
increment.

The proof of the convergence of the effective angular
argument 8,.,1 to zero, which is necessary in the VEC-
TORING mode, may be obtained by replacing X by 8 in
(29) through (32). In VECTORING, the sign of the
angle 0; is obtained by sensing the sign of ¥;. The se-
quence of signs of ¥;is the negative of the ATR code for
the effective rotation performed on the components
Y1 and X,. During each cross-addition operation in the
Y and X register, the corresponding ATR constant can
be conditionally added or subtracted, depending on ¢,
to an accumulating sum in the angle register so that, at
the end of the computing sequence, when 8,,,=0, the
quantity in the angle register will be equal to the orig-
inal angular argument 8, of the coordinate components
Y1 and Xx.

The step-by-step results of a typical rotation com-
puting sequence are shown in Table I. The two's com-
plement notation is used for all quantities, and, for
simplicity, shifted quantities are simply truncated
without round-off.

The step-by-step results of a typical vectoring com-
puting sequence are shown in Table II.

Fig. 3 contains the solution flow for solving a typical
navigation problem with the CORDIC computing

TABLE 1
TyrrcaL ROTATION CoMPUTING SEQUENCE

Y Register X Register Angle Register
¥,=0.0101110 1.1000101 =X, 0.1100101 =)
+1.1000101 ~0.0101110 —0.1000000 tan™!
1.1000101 1.1010010 0.0100101
+1.1010010 —1.1000101 —0.0100000 tan—t{
1.0010111 0.0001101 0.0000101
+0.0000110 —1.1001011 —0.0010010 tan—! 2=
1.0011101 0.1000010 1.1110011
—0.0010000 +1.1100111 +0.0001001 tan-! 2-2
1.0001101 0,0101001 1,1111100
—0.0000101 +1.1110001 +0.0000101 tan~ 2-3
1.0001000 0.0011010 0.0000001
—+0.0000001 —1.1111000 -0.0000010 tan—12—¢
1.0001001 0.0100010 1.111111¢
—0.0000001 +1.1111100 +0.0000001 tan—! 2%
1.0001000 0.0011110 0.0000000
TABLE 1II

TyricaL VECTORING CoMPUTING SEQUENCE

Y Register X Register Angle Register
Y,=0.0101110 1.1000101 =X, 0.0000000
-1.1000101 +0.0101110 +0.1000000 tan™! «
0.0111011 0.0101110 0.1000000
—0.0101110 +0.0111011 +0.0100000 tan—!1
0.0001101 0.1101001 0.1100000
~0.0110100 +0.0000110 +0.0010010 tan—12-1
1.1011001 0.1101111 0.1110010
+0.0011011 —1.1110110 —0.0001001 tan—t 22
1.1110100 0.1111001 0.1101001 :
+0.0001111 -1.1111110 —0.0000101 tan—t 2—?
0.0000011 0.1111011 0.1100100
—0.0000111 +-0.0000000 +0.0000010 tan—? 2+
1.1111100 0.1111011 0.1100110
<40.0000011 —1.1111111 —0.0000001 tan—! 2%
1.1111111 0.1111100=KR, 0.1100101 =6

TEMPORARY
STORAGE
OPERATION

Y REGISTER
X REGISTER
ANGLE REGISTER

CONSTANTS

INPUT L
VARIABLES o-ba
SOLUTION

RESULTS

Fig. 3—Solution flow diagram,

technique. Specifically, this example shows the program
sequence necessary for solving for the course angle and
the distance-to-destination relationships in great circle
steering.
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Each operation of the computing sequence is repre-
sented by a box containing the ¥, X and Angle registers.
The particular operation performed is abbreviated as
follows:

Ry = Rotation,
V. = Vectoring,
M, = Multiplication.

The explicit equations solved are

cos Ap sin (Lp — L)

tween Fig. 3 and an equivalent analog resolver solution
flow diagram is the insertion of multiplication routines
to compensate for the magnitude change factor K of
each trigonometric operation. Note that, although five
trigonometric operations are performed, only two multi-
plication operations are necessary.

CONCLUSION

The CORDIC computing technique is especially suit-
able for use in a special-purpose computer where the

C4 = tan!

(33)

sin Ap cos A4 — cos Ap 8in Mg cos (Lp — L4)
cos Ap sin (Lp — L)

(39)

d = tan™!

where

Ca=course angle to destination
d=distance to destination

Aa=present latitude

L, =present longitude

Ap=latitude of destination

Lp=longitude of destination.

The form of (33) and (34) cannot be used for estab-
lishing the CORDIC solution-flow diagram, It is neces-
sary to express the relationship with some form of rota-
tion operators, such as rotation matrices; a similar
change in form is also necessary for establishing analog
resolver solution-flow diagrams. The only difference be-

sin C4[sin Ap sin A4 + cos Ap cos Mg cos (Lp — L)}

majority of the computations involve trigonometric re-
lationships. In general, the ROTATION and VECTOR-
ING operations should be considered constant-length
routines in which the number of word times per opera-
tion is equal to the word length.

While not covered in this paper, similar algorithms
have been developed for multiplication, division, con-
version between binary and mixed radix systems, ex-
tractions of square root, hyperbolic coordinate trans-
formations, exponentiation and generation of log-
arithms,

It is believed that similar algorithms based on this
fundamental concept of computation could be developed
for many other computing requirements,

230




