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Pseudo  Division 
and  Pseudo  Multiplication  Processes 

Abstract: Some digit-by-digit methods for  the evaluation of the elementary functions are described. 
The methods involve processes that resemble repeated-addition multiplication and repeated- 
subtraction division. Consequently, the methods are easy to implement and the resultant execution 
times are short. 

Introduction 

It is  customary  in  computers to build an  arithmetic 
unit which is capable of adding,  subtracting, multiply- 
ing and possibly dividing. To perform  more  compli- 
cated  operations  it  is  usual to write routines that use 
these  basic  operations,  operating on words at a time. 
However, in  certain cases, digit-by-digit methods exist 
for  the evaluation of certain  functions.  Some of these 
are altractive because they can be made faster  than  the 
corresponding  subroutine  methods,  and  also because 
they do  not need so much  storage  space;  sophisticated 
fast  subroutines for evaluating  the  elementary  functions 
require the storage of many  constants. Hence, it is 
worthwhile considering whether  more powerful arith- 
metic units  could  be  provided which would be capable 
of  performing these digit-by-digit methods. 

The advent of microprogramming  as a method of 
computer  control  has  made  it very easy to construct 
relatively complicated arithmetic  units.  The methods 
described here  are  ideal  for a machine with such con- 
trol. However, these  methods  can also easily be 
implemented  in a conventional  manner. 

The first part of this  paper will show flow diagrams 
of four routines.  These will form, respectively, ylx, 
log[ 1 + (ylx)], tan- ’(ylx), and d* for given y and x. 
A striking  feature of these four routines is their 
similarity. This  means that a  common  microprogram 
subroutine  or  common  hardware may  be used, in  one 
of four different modes of operation,  and this, of 
course, represents an economy  in the  number of micro- 
instructions or  in  the  amount of hardware  required. 
These  ideas are particularly  helpful to  the designer of 
small but powerful machines, but they may  also have 
applications for larger machines, where it is required 
to have  the elementary  functions  “built  in.” 

The second part of this  paper shows how essentially, 
by reversing the  above routines, tan y, xey and xy2 
may be generated. 

21 0 In the  paper  it will, be  supposed that base 10 arith- 

metic is being used. This is by no means  a  restriction. 
However, the fact that  operations can  be  performed 
with base 10 is an  advantage in the  area of small 
machines where it  may be  inconvenient to provide 
decimal-to-binary  conversion. 

Section 1: Division 

The basic repeated subtraction process is, of course, 
very well known  indeed. For completeness the flow 
diagram  for  it is shown  in  Fig. 1.  

Initially register A contains an n digit  word y ,  and 
register B an n digit word x. x is subtracted from y as 
many times as is possible until A becomes as small as  it 
can  without going negative. The  number of subtrac- 
tions is recorded  in a counter whose contents  are 
transferred to a shifting register Q .  One  too  many 
subtractions is performed  and this requires a subse- 
quent  addition. It is possible of course to omit  this 
addition  and alternately  subtract and  add,  and this 
possibility remains  in the cases of the routines to be 
described. However, for  the sake of simplicity, this 
complication will  be omitted. (A)  are  now multiplied by 
10 and  the process is repeated.  When  it  has been re- 
peated n times as shown by the  counter j ,  the ( Q )  are 
the n digits of the  quotient ylx. 

To keep the digits of the answer less than 10, there 
is a  restriction y/x < 10. A must  be a register of length 
n + 1 to allow for  the shift  left. The answer is, of 
course,  exact, except for  the remainder. 

Modijied division 

The modification to this  basic  routine which is pro- 
posed here is to provide a modifier register M. This  is 
loaded  during  each  subtraction cycle immediately 
prior  to  subtraction.  After  each  subtraction  the  pseudo 
divisor which is in B is updated.  This  is done by 
adding to  the divisor, the  contents of the modifier M 
shifted j places to the  right, where t h e j  + lth quotient 
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ENTER 

I SET i = 0 

ADD 1 TO COUNT  (A)  + (B)-(A) 

SHIFT (a) ONE PLACE  LEFT 
COUNT  TO LEAST SIGNIFICANT e SHIFT ( A )  ONE PLACE  LEFT 

I ADD 1 TO i 

TEST i 

Figure 1 Flow diagram  for  elementary divider. 
Initially A contains y and B contains x. The quo- 
tient  is obtained in Q. 

digit qj, is being formed. A flow diagram for this 
process is shown in Fig. 2. 

It will transpire roughly that  the various routines 
differ  only in that the contents of different  registers are 
used to load the modifier. It will be found indeed that 
in one case the digits qj are such that 

log[l + ( y / x ) ]  = qj log(1 + 1O-j) ; 
i 

in another  that 

tan”(y/x) = q j  tan” IO” 
i 

while  in a  third 

Jylx = c qjl0”. 
i 

The precise  ways in which the various routines work 
will  next  be  described.  Flow diagrams for all of them 
are shown together in Fig. 3. 

To form log[l + (y/x)I 
The method used  is essentially Brigg’s method modified 

so that the main part of the calculation is by a pseudo 
division  process, and handled in  such a way that 
accuracy is retained. 

The method consists of choosing digits qj so that 

y + x = x  JJ (1 + lO”)Q, 
j = O  

where y and x are given It digit  positive  numbers. The 
calculation of qj is made to resemble a division.  When 
this has been done, 

log[l + ( y / x ) ]  = qj log(1 + 10-j) . (2) 
j 

The calculation is split into two parts. In the first 
part, digits qj are calculated. In the second, the 
logarithm is calculated from (2) using stored values 
for log(1 + 10-j). This latter calculatiog turns  out to 
be a pseudo multiplication. 

Figure 2 Flow diagram  for  elementary  modified 
divider. 
Initially A contains y andB contains x. Thepseu- 
do quotient is obtained in Q. 

ENTER 

1 
SET i = 0 

- 
I 

SET (M) 

I 
( A )  - (B)-(A) 

+O / / \  e Oh 

1 1 I SHIFT (a) ONE PLACE  LEFT ADD 1 TO COUNT 
COUNT TO LEAST SIGNIFICANT 

I I 
I SHIFT ( A )  ONE PLACE  LEFT I 

9 ADD 1 TO i 

21 1 
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ENTER 

1 
SET j = 0 

I I 
TEST FUNCTION 

KT(M)  = 0 SET (M) = ( 8 )  SET (M) = 10-i ( A )  SET (M) = Z x  
(PRECOMPUTED CONSTANT) 

I I 

1 

?-l ADD 1 TO  COUNT 1 SHIFT (Q)  ONE PLACE  LEFT 
COUNT  TO LEAST SIGNIFICANT 

4l SHIFT ( A )   O N E  PLACE  LEFT 

ri TEST FUNCTION 
I I 

I 

SET (M) = 0 . 9 ~  
(PRECOMPUTED CONSTANT) 

N O T  SQUARE ROOT 

I 
EX11 

t 

Figure 3 Flow diagram for modified divider. 
Initially A contains y and B contains x .  The pseudo quotient is obtained in Q. This routine is used for I )  division, 

21 2 2) Part I of log[l + (y lx) ]  calculation, 3)  Part I of tan-l(ylx) calculation and 4 )  dylx calculation. 
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Part I of calculation 

The basic idea is to suppose that 

- x n (I + 10-~)4~  - 1 
j - 1  

[k= 0 1 
has been calculated, where qo qj- are digits that 
have already been chosen, and  that they have been 
chosen in such a way as  to make this expression as 
small as possible. It is now required to find the next 
digit qj. For this, successive calculations of 

y p  = y - x n (1 + 10-k)qk (1 + 10-j>. - 1) (3) 
j -  1 1 [ k = O  1 

for a = 0, 1, 2 * qj are made. qj is  defined  by 

Y41(j) 2 0 > Y,,+l (i) . 
The idea is to try the effect  of including further 

factors (1 + lO-j), with the object of keeping y,") 
positive but making it small. 

It is convenient to define 

The successive y's and x's may be calculated from 
(3) and (4) by the recurrence relations 
yu+l(j) = yu(i) - lo-jx ( j )  

xu+l(j) = x,(i) + lo-jxu(j) . 
By design the y's get smaller and smaller. To keep 
accuracy, it is convenient to  do what is done in the 
case of a  true division and  put 
zu( j )  = loiy ( j )  . (6)  

Then  for each j the recurrence relations become 

(1 

( 5 )  

and these are  the equations  for the evaluation of qj.  
qj is  defined  by 

zql(j) >= 0 > zql+ (1). ( 8 )  

This is clearly a pseudo division process. z:j) is the 
pseudo remainder and x,(j) is the pseudo divisor. It 
only differs from  a  true division in  that  the pseudo 
divisor is being constantly updated by the addition of 
IO-jx,") to  it instead of being held constant. 

When qj has been found it is clear that  the initial 
conditions  for the evaluation of qj+ are 
zo(j+l) = loj+ly ( j+ l )  = lo'+' ( i )  = loz 

xo( i+ l )  = (i) . 
Hence, when qj has been found,  the process continues 
for  the extraction of qj+l with the pseudo remainder 
zql(i) multiplied by 10. This exactly  resembles what 
happens in the case of a  true division. 

0 Y 4 l  41 
(9) 

''?J 

When the process is first started it is also clear that 

z0(O) = y 

x0(O) = x .  
(10) 

Hence, the following algorithm is established: 
If y is divided by x using a  long division repeated 

subtraction process wherein the divisor x is continually 
updated by having 10-jx added to it during  the  for- 
mation of the  quotient digit, qj, then  the pseudo 
quotient qo, ql ,  qz - is such that 

log[l + ( y / x ) ]  = q j  log(1 + 10" ). (11) 
j = O  

The flow chart in Fig. 3 contains this process and 
shows it explicitly. It is identical for this case, with 
that shown in Fig. 1 for  a  true division except for  the 
provision of the modifier register Mas  shown in Fig. 2, 
whose contents update  the divisor. Each time a sub- 
traction is performed the modifier is set with the 
divisor itself, so that  the recurrence relations (7) are 
satisfied. 

Magnitudes of x and y 

It is desirable that all the  quotient digits qj should be 
less than 10. As in  the case of a  true division, this 
implies an upper restriction on y/x. Indeed, for 
qo < 10, we must have 

y / x  < 21° - 1 .  

For subsequent digits the  condition is automatically 
met because it is certainly met for  a  true division, and 
in  the pseudo division the divisor is being continually 
increased. When y/x is small, the calculation 
approaches  a  true division and  not surprisingly 

10gCl + (Y/X>l YlX 

Register lengths 

x and y are each n digit numbers with, it is supposed, 
their decimal points aligned. However, since the num- 
ber contained in B grows during  the calculation, B 
may have to be a register of length greater than n. The 
contents of B at the end of the calculation are,  in  fact, 

x n (I + 1 0 - ~ ) 4 k  
k = O  

= y + x by construction, 

so that  it is obvious that a register of length n + 1 for 
B will  suffice. The remainder register A ,  will also never 
have to contain  a number greater than ten times that 
in B. Hence, the length of register A is made n + 2. 
Q is given a length of n,  and  the pseudo quotient is 
calculated to n digits. Considerations of accuracy 
show that  it is not worthwhile calculating more digits. 
Table  1 shows a typical calculation, with the successive 
contents of registers shown explicitly. 21 3 
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Accuracy 

Approximations only occur when the shifted modifier 
is  added to  the divisor. However, it is easy to see the 
effect of the figures dropped  in  this shift. It will  be 
supposed that  the  dropped figures are used for 
rounding  in  the  addition.  The first round-off errors 
occur when q1 is being calculated. Let 6xk be the 

Table I Example of formation of log[l + (y lx ) ] .  
y = 67719 and x = 21608. 

rounding  error  introduced  at  the kih rounding.  Then, 
when q1 has been formed, (A)  will be  in  error by 

6y, = (41 - 1)6x, + (41 - 2)6x2 + . * . (12) 

while (B) will  be in  error by 

6x1 + 6x2 + . * * + axq1 . (13) 

Before q2 is formed,(A) are shifted left. Hence, if we 
consider  only  errors that  are caused while q1 is being 
formed,  there will be  an  error of 

6 y ,  = lO[(q, - 1)6x, + (41 - 2)6x, + * ]  

+ q2(8x1 + - . + ax,,) 
j B A Count Q in A when q2 has been found  and so on. 

in A of 0 21608  67719 
21608 2 1608 1 

When 4,- has been formed,  there will be an  error 

43216 461 11 
43216 43216 

86432 2895 

1 86432  28950 

2 86432 289500 
864 86432 

2 

00002 

6y,-, = 1O"-2[(ql - 1)6x, + (41 - 2)6x, + * . * 1 
+ (10"-~q, + 10" -~q,  + + qn-l)  

x (6x1 + 6x2 + . * + JX,,). (14) 

In  the worst case q1 = q2 = q3 = * * = 9 

6 x l = 6 x 2 = ' * . = 6 .  

00020 It is then  found  that 

6 y , - ,  = 45 x 10"-26. 
87296  203068 1 

873  87296 

88169 1 15772 2 
882  88169 

89051  27603 

3 89051 276030 
. 89 8905 1 

89140 186979 
89 89140 

89229 97839 
89 89229 

89318 8610 

- 

- 

L_ 

3 

.~ 

The effect of round-off errors  that occur when q2 is 
formed is identical except that it is ten  times as small, 
and so on.  Thus,  in  the  worst case, the effect of all 
rounding  errors is to  produce a  total  error  in A, when 
qn-l has been formed, 

6y,-, = 45 x 10"-26(1 + 10" + + a . e )  

00203 = 50 X 10"-'6. (16) 
When 4.- , has been formed, 

1 ( B )  - Y + x 

2 
qn- is found effectively by the  true division of (A)  by 
(B)  since, at this stage the effect of the modifier is 
negligible. Clearly, the  error  in (A) predominates, and 
due to this  cause  there is an  error in qn-l  of 

3 50 x 10'"2[S/(y + x)]. (17) 

4 89318 86100  02033 Because of the  rounding  in  the  addition  and because 
it is supposed that  at least  one of y or x contains n 

20330 significant digits, 

[6/(y + x)]  < 5 x lo-".  (18) 

Zog,[l + (ylx)] = 2 log, 2 + 3 log, 1.01 + 3 log,  1.001 The worst case error in qn-l is, therefore, less than 
A pseudo multiplication then causes the evaluation of 

giving log,[l + ( y l x ) ]  = 1.4192. If more  digits of 2.5. Thus,  the last digit of the  quotient will never be 
the pseudo quotient  are  calculated  a  value for  in  error by more  than 2.5. Due  to  the fact, however, 
log,[l + ( y lx ) ]  = 1.419240 is  obtained which is in fact that it is likely for  round-off  errors to compensate, it 
exact. is usual  for qn- to  be exact in typical  calculations. 

21 4 (The  probability of this happening  may,  in  fact,  be 
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ENTER 

1 
SET j = n - 1  

1 - 
TEST F U N C T I O N  

L O G  

T - 

SET ( 8 )  = IOi L O G  ( 1  + 10-1) SET ( 8 )  = IOi TAN"I0-1 

1 

SHIFT (Q) O N E  PLACE RIGHT 
LEAST S I G N I F I C A N T   T O   C O U N T  

, 

( A ) +  (B) - (A)  SHIFT ( A )  O N E  PLACE RIGHT 

d 1 
1 

SUB. 1 FROM j 

TEST i I 
j > O  i < O  

EX I T  

Figure 4 Flow diagram  for  multiplier. 
Initially multiplier is in Q, and B contains multiplicand. The product is obtained in A .  This routine is used for 
I )  multiplication, 2 )  Part 2 of log11 + (y lx) ]  calculation and 3 )  Part 2 of tan-'(ylx) calculation. 

calculated.)  Therefore, the  method  is inherently an 
accurate  one. 

Part 2 of calculation 

The second part of the calculation consists of finding 
log[l + ( y / x ) ]  from (11). The base to which the 
logarithm  is  calculated is determined by the  base to 
which the stored  constantslog(1 + 10-j)  are calculated. 
It should  be observed that log,(l + 10-j) - 10-j. 

Thus,  the decimal number qo .q1qzq3 is already 
a fairly close approximation to log,[l + (y lx ) ] .  
Indeed, if working is carried  to n figures, only about 
the first half of the  qj cause  corrections to be  made. 

The  formation of log[l + (y /x ) ]  from (1  1) clearly 
resembles a  multiplication. The  number in Q is the 

multiplier, while the multiplicand is given the value 
log(1 + 10-j) while multiplication by the digit qj is 
taking place. It is, therefore,  convenient to use a 
pseudo  multiplier for  this operation. The  operation is 
identical to  an ordinary multiplier save that  the multi- 
plicand is set from  some  read-only  store to  the required 
value, as each digit of the multiplier is processed. 
Figure 4 shows the process explicitly and also shows 
how it is  combined with a true  multiplication. It is 
good  enough, of course, to set 

10' log(1 + lo-j) = 1 (19) 

while the least significant half of the multiplier digits 
are processed. This economizes on the  number of 
stored  constants  required. 21 5 
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The intention is that this  routine  should  be no more 
than a  particular  mode of the  multiplication  routine. 
I t  is, of course,  true that  the pseudo  multiplication  and 
division could be combined  into  a single process. 
They have, however, been split so that they may  be 
combined with true multiplication and division. 

Execution times 
The time to  form  log[l + (y/x)] using this  method will 
be  about three  multiply times, and, of course, this in- 
cludes the division of y by x which conventionally 
would have to be  done before the calculation of the 
logarithm.  This  assertion  may  be slightly unfair since 
it assumes that multiplication would be  performed by 
a repeated  addition process, without  the use of any 
tricks  for speeding it  up. However, the  pseudo  pro- 
cesses described are also performed  without  any  tricks 
and  it may be that similar tricks  are  applicable  in  all 
cases. 

Log z 

If it is wished to evaluate  log z, where z is an n digit 
number with the decimal point to the left, then  the 
complement of z  should  be put in A and z itself into 
B before the process is begun. 

Then y = 1 - z so that 

log[l + (y/x)l = log[l + (1 - z)/z] 
(20) 

= - log z 

y / x  will not  be  too large if z is not  too small.  This 
makes an excellent method of finding log z if 0.1 5 z 
< 1, and so this  method  can be used for finding the 
logarithm of the  fractional  part of a floating point 
number. 

To form tan"(y/x) 

The  method used is one  that resembles Brigg's method, 
but  it is applied to complex logarithms. The central 
idea  is to find integers qj  such that 

( X  + iy) ( 1  - i10-j)Q = R , (21) 

where x and y are n digit positive numbers and R 
is real. When  this is done 

j = O  

lOg(x + i ~ )  = log R - q j  log(1 - i10-j) . (22) 
j = O  

The imaginary part of this  equation gives 

tan-'(y/x) = q j  tan-' 1 0 - j .  (23) 

Calculation is again split into two parts.  In  the first, 
integers qj  are  calculated by a  pseudo division process. 
In  the second tan-l(y/x) is found by a pseudo multi- 
plication, using stored values for  tan-' 10-j. 

Part I of calculation 

The idea is to suppose that ( x  + i y )  (1 - ilO-k)qk 

j = O  

j -  1 

21 6 k = O  

has been calculated, where qo * qj- are digits that 
have already been chosen in such a way as  to  make 
the imaginary part of this expression as  small  as 
possible, and  to consider what is required to find qj. 
For this, successive calculations of 

x a ( j )  + iy,"' = ( x  + iy) IT (1 - i10-k)yl - ilo-jy 
j -  1 

k = O  (24) 
are  made  for a = 0, 1 ,2  qj. qj is defined by 

That is, y'j) must  be  made as small as possible, while 
keeping it positive. 

By design, the y's get smaller as  the process is  con- 
tinued. Hence, to keep accuracy, it is convenient to  
write 

The recurrence  relations  then become 

These are obeyed repeatedly  until 

z q y  2 0 > zqj+ 1 ( j )  . (28) 

This is again  a  pseudo division process with z$) the 
pseudo  remainder  and xa(j)  the pseudo divisor. In this 
case, however, the pseudo divisor is repeatedly up- 
dated by adding to  it lO-'jz/). As in the case of 
logarithms, it is clear that when the  iteration  for  qj+l 
is started,  initial  conditions  are 

so that  the pseudo  remainder  has to be shifted one 
place to  the left. Also, at  the beginning of the entire 
process 

Hence, the following algorithm is established.  If y 
is divided by x using a  long division repeated  sub- 
traction process wherein the divisor is continually  up- 
dated by having lO-'jz added to  it (z the remainder) 
during  the  formation of the  quotient digit qj ,  then  the 
pseudo  quotient qoql * - - is such that 

tan-l(y/x) = qj  tan-' 10". (31) 

The flow chart  in Fig. 3 shows the process explicitly 
and  it only differs from  that  for  the  formation of 

j = O  
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I stead of to (B). 

Magnitudes of x and y 

Since 0 5 tan-l(y/x) 5 4 2  it is obvious qo 5 2. 
Also, since the divisor is continually being increased, 

it is clear that all the  other pseudo quotient digits are 
less than 10. Hence, all the  quotient digits are less 
than 10 and there are no restrictions on  the ratio ylx. 

J A 

Table 2 Example of formation of  tan-'(y/x). 
y = 30912 and x = 59438. 

i B A Count Q 

0 59438 30912 
~~ ~ 

1 59438  309120 00000 
3091 59438 

62529 249682 
2497 62529 

65026 187153 
1872 65026 

66898 122127 
1221 66898 

68119  55229 

2 68119 552290 
55 681  19 

68174 484171 
48 68  174 

68222 415997 
42 68222 

68264 347775 
35 68264 

68299 27951 1 
28 68299 

68327 21 1212 
21 68327 

68348 142885 
14 68348 

68362 74537 
7 68362 

68369 6175 

" 

3 68369  61750  00048 

4 68369  617500  00480 
68369 

549131  1 

At this stage it becomes a straight division process 
giving 

68369  2179 9 
04809 

A pseudo multiplication then causes the evaluation of 
tan-'(ylx) = 4 tan-' 0.1 + 8 tan" 0.01 + 9 tan" 
0.0001 giving tan "(ylx) = 0.4796. Zfmore digits of the 
pseudo quotient are  calculated tan- ( y l x )  = 0.479578. 
The  exact answer is 0.479574. 

Register lengths 

x and y are each n digit numbers with their decimal 
points aligned. At the  end of the process, B will contain 
approximately the  number R from (21), and 

R = [X + iyl n 11 - ilO"1Q (32) 
j = O  

00004 from which it may be shown 

R 5 21x + iy] _I 2 J j  max(x, y )  . (33) 

Hence, a register  of length n + 1 will certainly ac- 
commodate R. Therefore, as  for  the logarithm routine, 
it is  sufficient to make B a register of length n + 1 and 
A a register of length n + 2. 

Table 2 shows a typical calculation set out in detail. 

Accuracy 
The discussion of accuracy is virtually the same as  the 
discussion for logarithms, since, again the only errors 
that occur, occur when the  contents of the modifier 
are shifted and  added to update  the divisor. Errors 
occur because of the figures dropped.  The previous 
discussion applies to all pseudo division processes of 
this type. 

The result, therefore, is that  the worst possible error 
in  the  last digit of the  quotient q,,l-l is 

50 x 10'"26/R . (34) 

In this case too, therefore, the worst possible error 
is of 2.5 in  the  last digit of the pseudo quotient,  and, 
of course, owing to  the cancellation of errors,  it is 
usual  for qn- to be exact. 21 7 
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9 Part 2 of calculation 

Tan"(y/x) is now calculated from ( 3 1 ) .  This is done 
by means of a  pseudo  multiplication  and is exactly as 
described for  the logarithm and is shown in Fig. 4. 
However, the  multiplicand is set to 10' tan" 10" for 
successive values o f j  instead of to 10' log(1 + 10-j). 
For 213 of the values of j it is accurate  enough to set 

1Ojtan" 10" = 1 ( 35 )  

and  this,  therefore, saves stored  constants. 

Execution times 

The  time to  form  tan"(y/x) using this  method is 
about three multiply times and, of course, this  one 
also gains a division. 

To form  tan-' z, it is a very simple matter to  put 

y = 10"z 

x = 10" 

for a  suitable scale factor  lo",  though  then, of course, 
the  extra division facility is wasted. 

Assessment 

The  two  routines  that have been described give 
accurate values of log[l + (y/x)]  and tan"(y/x) in 
three multiply times which is quicker  than  any of the 
current  subroutine  methods.  They have the  advantage 
of simplicity since they merely employ pseudo dividers 
and pseudo multipliers. Moreover, they are  not unduly 
expensive with stored  constants. 

9 Square roots J y T  

It is also  tempting to use the modified divider that  has 
been described for  the  extraction of square  roots.  This 
can be  done  at  the expense of slightly more complica- 
tion. The  method is the  standard digit by digit one. 
The flow diagram is shown also in Fig. 3 .  It is seen 
that  the only difference from  the previous routines is 
that  the modifier is set to a  constant, while the  pseudo 
divisor is altered between the  extraction of successive 
digits. 

Integers qj are  found  such  that 
2 

y = x q,10" 
L = O  I 

so tliat 

(37) 

Jylx = 1 qjlo-' 
j = O  

Here, it is  supposed that qo qj- have been 
found  and  it is required to find qj. This is done by 
calculating successively 

(39) 

for a = 0, 1,2 - * . The object again is to make yo") as 
21 8 small as possible but  to keep it positive. Define 
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This  can be calculated from  the recurrence  relation 

As before, for accuracy's sake,  it is convenient to  put 
za(j) = lOjy,") and so get the recurrence relations 

(43) 

These equations  are  iterated  until zS(j) goes negative. 
That is, qj is defined by 

zqj(j)  >= 0 > zq j+  l ( j )  . (44) 

These equations  are  again like those that arise in a 
division process. z,(j) is the remainder,  and x,(j) is the 
pseudo divisor, which is continually being updated by 
the  addition of the  constant 2x, shifted j places. 

The  initial  conditions  for the extraction of qj+  are, 
however, more  complicated. Clearly 

zo(j+ 1 )  = lozqj( j ) .  

However 
x o ( j +  1 )  = ( j )  - xlo- j + xlo- j - 1 .  

xq.t (45) 
Thus, before the  calculation of q j+ l  the pseudo 

divisor must  be  updated by subtracting from it 
0.9 x IO-jx,  and  this  constitutes  the  extra  complication. 

At the beginning of the process 

(46) 
x0(O) = x . 

, I  

Hence, the following algorithm  is  obtained. If a 
pseudo division of y by x is performed, where the 
modifier is held constant  at 2x, and if between the 
calculation of successive digits 0.9 x 10"x is sub- 
tracted  from  the divisor, then  the  quotient is JTx. 
Of course  the  numbers 2x and 0 . 9 ~  can  be  calculated 
before the process is begun. 

This  routine  probably  looks  more  familiar if it is 
performed with x = 1. It should be observed that it 
is very easy to set the modifier at 2x in  a  binary 
machine  and also that in a  binary  machine the factor 0.9 
that occurs  in  the  subtraction is replaced by a  factor 0.1. 

9 Magnitudes of numbers 

It is convenient to suppose that y and  x  are given as 
numbers with n significant digits and  that either  their 
decimal points are aligned or else misaligned by one 
digit. If they are aligned this implies that 10 > y/x > 
1/10, If they are misaligned, y is shifted one place left 
to align them before calculation  is  begun. In  the latter 



digits will be less than 10. 

Sizes of registers 

At the end of the process B will contain  approximately 

2 JXy. (47) 

x 5 C, the  largest n digit number y 5 IOC. 

Hence, 

2 4 5  5 2410 c . (48) 

Hence, as before, a register of length n + 1  will 
suffice for B and a register of n + 2 for A .  A typical 
calculation is shown in  Table 3. 

Accuracy 

Errors  occur when the shifted modifier updates the 
divisor and figures are  dropped,  and also, when the 
divisor is updated between the  extraction of successive 

J A Count y 

Table3 Exampleofformation of square root f i  
y = 77208, X = 16804,2x = 33608,0.9x = 15124. 

i B A Count Q 

0 16804  77208 00000 
33608  16804 

50412 60404  1 
33608 50412 

84020  9992  2 
15124- 

1  68896 99920 
3361 68896 

72257  3  1024  1 
1512- 

2  70745 310240 
336 70745 

7  108  1 239495 
336 71081 

71417 168414 
336 71417 

71753 96997 
336 71753 

72089 25244 

" 

151 - 

00002 

0002 1 

3  71938 252440 
34 71938 

71972  180502 1 
34  71972 

72006  108530 2 
34  72006 

72040  36524  3 
15- 

002 14 

4  72025 
3 

365240 
72025 

02143 

72028 
3 

7203  1 
3 

2932 15 1 
72028 

221  187  2 
7203 1 

72034 
3 

72037 
3 

72040 

149156  3 
72034 

77122  4 
72037 

5085  5 

21435 

The answer is therefore 2.1435. 
If the process is continued it gives 2.143507, which 

happens to be exact.  Note that it is assumed  y and x 
have their decimal points aligned. 

digits. The first errors  are  those  that have been en- 
countered previously. The  others  are of the  same type 
but occur  in the worst case one  tenth  as  often. Hence, 
from (16) there is a worst case error of about 

55 x 10"-26 (49) 

in A when qn- has been formed. 
qn- was obtained essentially by a division of ( A )  by 

(B).  B contains at this  time 2&. Hence, the  worst 
case  error  in qn- 

- (55 x 10n-2/2)(6/Jxy). (50) 

Since, by design x and y each contain, at least, n 
significant digits 

GIJXy < 5 x lo-". ( 5 0  

This  leads to a  worst case error  in qn- of 1.5 and 21 9 
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so this  routine has the same kind of accuracy as  the 
others. 

Conclusion 

It is, therefore, possible to make  a simple pseudo 
divider and  a simple pseudo multiplier which between 
them,  operating  in different modes,  can  compute  ylx, 
log[l + (Y/X)l, tan-'(y/x), Jylx. 
Section 2: Multiplication 

The processes that have been described in Section 1 
may  be reversed. This reversal leads to methods  for 
forming  exponentials,  tangents and squares. In  the 
reverse processes, multiplications become divisions 
and divisions multiplications. In the  multiplications 
that result, it is naturally expected that  the least sig- 
nificant digit of the multiplier will be processed first 
and  that  the answer will  be obtained as the  ratio of 
the  contents of registers A and B. This implies that  an 
ultimate  extra division is necessary. 

It transpires, however, that accurate  methods  for 
forming  exponentials  and  squares  can be  devised that 
avoid  this final division, but  in  the  multiplications that 
they contain,  the  order of multiplication is changed 
and  the  most significant digit of the multiplier is pro- 
cessed first. In  the case of the tangent, however, the 
method  must  be the exact reverse of the  method  for 
the inverse tangent.  This  makes the methods slightly 
different from each  other. 

To form exponentials 

The  method to  be described enables x(ep - 1) to  be 
calculated for given positive p and x. p is expressed as 

p = qjlOg(1 + lo-]), (52) 
j = O  

for integers qj. Then, clearly 

x(eP - 1) = x n (1 + 1 O - j ) q j  - (53) [ j = O  

If p were negative, it would be possible to  make  an 
expansion of p in  terms of log(1 - IO-j). This would 
be the reverse process of what would be  done in finding 
log[l - ( y / x ) ]  for positive x and y.  This was not  treated 
explicitly in the first section of the  paper, but  the reader 
should observe that  the only difference for  that case 
is that  the pseudo divisor should  be  updated by a 
subtraction  rather  than by an  addition. 

In floating  point  applications, it is probably 
sufficient, however, for p to be positive and so only 
this  case will be dealt  with now. 

The calculation is split into  two  parts.  In  the first, 
integers qj are  found by a  pseudo division, and  in  the 
second the exponential is evaluated by a pseudo 
multiplication. 

Part 1 

To find integers qj a division of p is  made.  The divisor 
220 is  set to  log(1 + 10-Jj from a  read only store while the 
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digit qj is being formed.  Figure 5 shows the process 
explicitly, and it is clearly the reverse of what is shown 
in  Fig. 4. Of course,  constants  lOjlog(1 + 10-j)  are 
taken  from  the  same  store. 

Magnitude of p 

It is necessary to have all digits qj less than 10. This 
means that p < 10 log 2 for qo < 10, while this  con- 
dition is met  automatically for  other digits since 
log(1 + 10-j) < 10 log(1 4- lo-j-1) . (54) 
p and  the  constants 10' log(1 + 10-j) must  have  their 
decimal points aligned. The  constants  are stored  as n 
digit numbers, the decimal point being to  the left. Hence, 
the  number p must be shifted if necessary before the 
process is begun. n pseudo  quotient  digits  are calcu- 
lated.  The accuracy to which p is known will not 
warrant  the calculation of further digits. 

Part 2 

To calculate 

j = O  1 (55)  

a  pseudo  multiplication is performed using qo qn- 
as  the pseudo  multiplier, and  starting with the  most 
significant digit qo. 

For this,  suppose  that 

has already been calculated  and that it is now required 
to introduce  a  further  factor (1 + 10-j)q~. Define 

y,"' = x n (1 + 1 0 - k ) y l  + 10-jy - 1 
j -  t 

[ k = O  
(57) 

xa(i) = 

Then,  for successive a's, the recurrence  relations 

x a + l ( j )  = xa(i) + lo - jxa( j )  

are obtained  and these are iterated  for a = 0 * qj - 1. 
It is convenient to make 

za(i) = lojy ( i )  . 
Then  the recurrence  relations become 

a (59) 

These  equations now resemble a multiplication; 
z i j )  is the partial  sum, while x / )  is the  multiplicand 
which is being continually  updated by the  addition of 
itself shifted j places. qo * - - 4.- is the multiplier. 

When qj has been processed, initial  conditions for 
the processing of qj+  are 



zo(i+ 1) = loz (i) 

x o ( i + l )  = (i) . 
41 

Hence,  a  pseudo  multiplication is being made, where 
(61) x is the pseudo  multiplicand that is repeatedly updated, 

There is, therefore,  a shift left of the partial  product identical with that for a true multiplication (multi- The flow chart  in Fig. 6 shows this process. It is 

between the processing of  successive digits and  this is plication from the left) except for the provision of the 
exactly what  happens  in  the case of a  true multiplica- 
tion where the most significant digit is processed first. plicand after each successive addition. modifier register which updates the pseudo  multi- 

If it is required to calculate xep rather  than x(eP - I), 

XqJ and qo . qn- is the multiplier. 

When the process is started 

then  the  partial  sum register A should  initially  be set 
(62) at x. Of course, x may be set at one  for  the calculation 

of ep  but use of the  method's full power is attractive. 

Figure 5 Flow diagram  for  divider. 
A contains dividend and B contains divisor. The quotient appears in Q.  This routine is used for 1)  division, 2 )  Part I 
of x(ep - I )  calculation and 3)  Part 1 of tan x calculation. 

ENTER 

1 
SET j = 0 

TEST FUNCTION 

EXP 

v 

SET ( B )  = IOi L O G  ( 1  + 10-j) 

v 

( A )  - (B)-(A) 

li 

ADD 1 T O   C O U N T   ( A ) +   ( B ) - ( A )  

SHIFT (Q) O N E  PLACE LEFT 

@ SHIFT ( A )   O N E  PLACE LEFT 

4 
ADD 1 TO j 

1 
TEST i 

j < n  j > n  

EXIT 
221 
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ENTER 

1 

I SET i = n - 1 ( 0 )  

I 
SHIFT ( Q )  ONE PLACE RIGHT (LEFT) 

LEAST (MOST)  SIGNIFICANT TO COUNT 

I 
TEST FUNCTION 

I SUBTRACT 1 FROMCOUNT I 
I I 

I I I 

(PRECOMWTED CONSTANT) 

+ SHIFT ( A )  ONE PLACE RIGHT (LEFT) 

TEST FUNCTION 

I 
EXIT 

c 
Figure 

1 
I 

NOT SQUARE 

+ SUBTRACT (ADD)  1 FROM (TO)  j 

6 Flow diagram  for modified multiplier. 
B contains pseudo multiplicand, Q contains pseudo multiplier, and A contains pseudo product. This routine  is used 
for I )  multiplication, 2) Part2of  x(ep - I )  calculation, 3)  Part 2 of tan p calculation and 4 )  xq2 calculation. Where 
choice is indicated, multiply and tangent routines employ the first possibility, while exp and  square routines employ 
the second. 

Register sizes that register B does not overflow. In  an application 
where  floating  point  arithmetic is used, it is likely 

As the calculation progresses, the size of the  pseudo that x will be  a  number with n significant digits and 
multiplicand increases. Eventually it will approxi-  that 1 5 ep < 10. In this case B should  be  a register 

222 mately equal xep, and so care  must be taken  to see of length n + 1. 
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Table 4 Example  of  formation of x(ep - 1). 
x = 21608 and p = 1.4192. An initial pseudo 
division of p gives (Q)  = 20330. This pseudo 
division expresses p as p = 2 loge 2 + 3 loge 
1.01 + 3 log, 1.001. 

j B A Count Q 

0 2 1608 
2 1608 

43216 
43216 

86432 

1 86432 

2 86432 
864 

87296 
873 

88169 
882 

89051 

3 89051 
89 

89 140 
89 

89229 
89 

89318 

00000 
21608 

2 1608 
43216 

64824 

648240 

6482400 
86432 

6568832 
87296 

6656128 
88169 

6744297 

67442970 
8905 1 

67532021 
89140 

67621161 
89229 

67710390 

2 

1 

0 

0 

3 

2 

1 

0 

3 

2 

1 

0 

03300 

3 3000 

30000 

00000 

The method, therefore, gives the answer 67710. The 
correct  answer  is 677154. The  decimal point is aligned 
with  that in the number x .  There appears to be a large 
error.  However, this disappears i f  ( Q )  are calculated  to 
6figures rather than 5 and the process is continued one 
stage  further. I f p  is known, however,  only to the number 
offigures shown, this further accuracy is spurious. 

At  the  end of the process, A will contain  a  number 
of similar size, except that it  has been shifted left n - 1 
times. Hence, A must  be  a register of length 2n. It is 
unfortunate  that A has to be such a long register. 
However, it  can  be  joined up with register Q as is 

often  done, since the  number of digits in Q decreases 
as  the  number in A increases. 

Accuracy 

The number that is in A at  the end of the process is 
the required answer and  it is necessary to find how 
many digits of it  are accurate.  Inaccuracies  occur  in 
the pseudo  multiplication process, due  to  the  dropping 
of figures when the pseudo  multiplicand is updated. 
The way in which these affect the contents of A is 
exactly the same way in which the  contents of A were 
affected in the corresponding  pseudo division process. 
Hence, from (16), the  error in (A)  when qn-l has 
been processed is at worst 

50 x lO'"'6. (63) 

Because of the rounding in  the modification, 6 = 0.5. 
Thus,  there is an  error of about 2.5 in  the n - lth digit 
from  the right in A .   ( A )  are,  therefore, shifted n - 1 
places to the right. A now  contains  a  number of length 
n + 1 with its  decimal  point aligned with that in the 
number x .  Its least significant digit is in  error by at 
most 3. 

Inaccuracies also occur because in  the preliminary 
division only n digits of the pseudo  quotient  have 
been calculated. However, as has been explained, this 
is  only the accuracy that is warranted  and  this  in- 
accuracy is inherent  in the number system used. 

The  method, therefore, is inherently an  accurate one. 
Table 4 shows a typical calculation with the successive 
contents of registers shown. 

Execution  times 

xep or alternatively x(eP - 1) is  formed in approxi- 
mately three  multiply times, so this is certainly  a  fast 
method. 

To  form tangents 

The  method  to be described enables tan p to be cal- 
culated. The answer is obtained as a ratio  and  as has 
been explained, a final division is necessary. 

It is supposed that 0 4 p 5 7~12. p is expressed as 

p = qjtan" 10" (64) 

for integers qj. An evaluation of 

x + iy = R (1 + ilO-j)q' (65) 

is then  made  for  some real R. Clearly then 

tan p = y / x .  (66) 

The integers qj are obtained by means of a  pseudo 
division, and x and y are then calculated by means of 
a  pseudo  multiplication. 

Part I 

The pseudo division is shown in Fig. 5. It is identical 
with the corresponding process used in  forming  the 

j = O  

j = O  

223 
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exponential, except constants 10' tan" 10" are used 
instead of 10' log(1 + 10-j). 

Magnitudes of p 

Since p 5 4 2 ,  qo 5 2; therefore since 

tan" 10" < 10 tan" lo-j-' (67) 
all  other digits qj  are less than ten. 

As in the case of the exponential, p and  the  constants 
10' tan" 10-j must have their decimal points aligned. 
The number p is, therefore, shifted if  necessary. n 
pseudo quotient digits are calculated. 

Part 2 

To calculate 

R n (1 + ilO-j)Q 
j = o  

a pseudo multiplication is performed using qo * qn- 
as  the pseudo multiplier, and  starting with the least 
significant digit qn- 1. Define 

n -  1 
x,( j )  + iy,") = R n (1 + ilO-k)qk(l + il0-3" (69) 

k =  j +  1 

and  put zo(j) = 1Ojy;j). (70) 

Then  for successive values of a,  the recurrence 
relations 

are  obtained,  and these are  iterated  for a = 0 qj - 1. 
Again these equations resemble a multiplication. 

z,(') is the  partial  product. x,(j) is the pseudo multi- 
plicand which  is continually being updated by the 
subtraction of z,(i) shifted 2 j  places. qo * qn-l  is 
the multiplier. 

After qj has been processed, qj-  is processed and 
the initial conditions  are 

At  the beginning of the process 

(73) 

Thus,  a pseudo multiplication of R by qo * qn- 
is made,  starting with the least significant digit, qn- l .  
This is exactly like  a true multiplaction except for  the 
updating by subtraction, of the multiplicand. 

The flow chart  for  this process is shown in Fig. 6 
also. 

digit number,  and register B is made of length n + 1. 
A never has to contain  a number more  than  ten 
times that in B, so A is made of length n + 2. An 
example is shown in Table 5. 

Accuracy 

The  contents of A and B at  the end of the process are 
in  error  due to the  dropping of figures  when the shifted 
contents of M update  the pseudo multiplicand. 

The effect of this cause is  easily  seen. The final ratio 
of (B)  to (A)  will be tan(p + 6,) for  some small a,, 
instead of tan p. It is convenient to discuss errors  in 
terms of 6,. If the  method  for  forming an inverse 
tangent is applied to (B) and (A) ,  it will  be found  that 
step by step  their  contents  approximate their con- 

Table 5 Example of formation of tan p . p  = 0.4796. 
An  initialpseudo division gives (Q) = 04809. This 
pseudo division expresses  p asp = 4 tan-10.1 + 8 
tan-' 0.01 + 9 t a r 1  0.0001. (B) are initially set 
for convenience at 1OOOOO. 

.i B A Count Q 

4 100000 00000 9 00480 
""" ""_ 
""" ""_ - 
1 OOOOO 900000 0 

3 100000 90000 0 00048 

2 100000 9000 8 00004 
1 100000 

99999 109000 7 
11 99999 

99988  208999 6 
21  99988 

99967  308987 5 
31 99967 

99936  408954 4 
41  99936 

99895  508890 3 
51 99895 

99844  608785 2 
61 99844 

Register sizes 

The pseudo multiplicand decreases as  the process con- 71 99783 
tinues. Initially, it contains  R, which is arbitrary. For 

99183  708629 1 

224 accuracy's sake, it is set to the largest convenient n + 1 99712  808412 0 
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j B A Count Q 

1 997 12 80841 4 00000 
808 997 12 

98904  180553 3 
1806  98904 

97098  279457 2 
2795  97098 

94303  376555 1 
3766  94303 

90537  470858 0 

0 90537  47085 0 00000 

A division of (A)   by  (B)  leads  to  a value of tan 
p = 0.5201. The correct answer is 0.52010. 

Values  of sin p = 0.4614 and cos p = 0.8872 can 
also  be obtained. The correct values are 0.46142 and 
0.88725. 

tents  during  the  formation of the  tangent. Actually, 
after digits qo * * qj have been formed in  the inverse 
tangent process, the  contents of B and A will  exceed 
the corresponding  contents  in  the  tangent process by a 
factor n:=o (1 + 10-2k)qk. However, rounding  errors 
occur similarly in both processes. If compensating 
errors  occur  in  the inverse process at exactly those 
places where errors  occurred  in the forward process, 
then  tan" tan(p + 6,) will  be calculated  as p ,  there 
being an error 6,. From  the discussion of errors  for 
the inverse tangent process it is, therefore, clear that 6, 
is at worst 2.5 in  the least significant figure of p ,  and 
so this gives a measure of the  error  in  the  tangent 
process. In  short,  the  dropping of figures when the 
modification is performed gives the same  errors  in  the 
tangent  as  in the inverse tangent process. 

Trigonometrical  functions 

This  method  produces  two  numbers, x and y whose 
ratio is tan p .  To obtain  tan p a  further division must be 
performed and obviously care  has to be  taken to see 
that x is not  too small. 

It is also possible to form sin p and cos p from 

sin p = Jy2 / (x2  + y 2 )  cos p = Jx2 / (x2  + y') . (74) 

These may be calculated by first squaring x and y 
and  then using the  square  root process previously 
described. In a microprogram  machine  in  particular, 
the necessary control  for  this is easy to provide. 

If the sines and cosines are held in n digit stores with 
the decimal point  one place from  the  left-hand  end, 

errors  due  to  the trigonometrical part of the  method 
will never exceed 2.5 in  the  least significant digit place. 

Execution  times 

x and y are  obtained in three multiply times. Tan p 
may  be calculated in  four times, while sin p and  cos p 
will take  approximately seven multiply times. 

To form squares 

The square  root  method  may also be reversed, to give 
a  method  for finding squares. This, of course, is not 
of much value but is mentioned here for interest's 
sake. It enables xq2 to be calculated for given x and q. 

A  pseudo  multiplication is performed. x is the 
initial  pseudo multiplicand and q is the multiplier and 
multiplication is performed  starting with the  most 
significant digit of q. At each stage, the pseudo multi- 
plicand is updated  in exactly the way the  pseudo 
divisor was updated in the  square root process. The 
pseudo  product is then xq2.  The  proof of this follows 
almost exactly the proof  for  the  square  root  method. 

Register  sizes 

It is convenient to suppose that x and q are numbers 
with n significant digits. It may then  be shown that 
register B has to have length n + 2 to allow for  the 
growth of the pseudo  multiplicand. Register A has to 
have  length 2n + 1 to allow for  the succession of 
n - 1 shifts left. 

Accuracy 

The way in which errors  occur is exactly the way 
errors  occur  in  the  square  root  routine. Hence, there 
is an  error in ( A )  at worst of 55 x 10'"26 when qn-l 
has been processed. Accordingly, at  the end of the 
process the  contents of A are shifted right n - 1 
places, giving an error of not  more  than  3  in  the least 
significant digit of (A) ,  ( A )  being now  a  number with 
n, n + 1 or n + 2 significant digits. 

Decimal points 

If it is assumed that  the n digit numbers x and q have 
their decimal point  one place from  the left-hand end, 
that is 1 5 x,  q < 10, then  the decimal point of xq2 
is aligned with them;  that is 1 2 xq2 < 1000. 

This  routine is also shown in  Fig. 6, and a worked 
exaniple is included in  Table 6. 

Assessment 

This  method enables xq2 to be  formed  in  two multiply 
times. It seems it  may have some value in  certain 
applications. 

Conclusion 

The second section has shown how x(eP - l),  tan p ,  
sin p ,  cos p,   xq2  may be calculated using pseudo 
multipliers and dividers. 

All the elementary  functions  may,  therefore, be 225 
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Table 6 Example  of  formation of x$. x = 1.6804, 2x = 3.3608, 0 . 9 ~  = 1.5124, q = 2.1435. 

j B A Count Q j B A Count Q 

1 

2 

0 16804 
33608 

50412 
33608 

84020 

- 

- 

15124- 

68896 
3361 

72257 
1512- 

70745 
336 

71081 
336 

71417 
336 

71753 
336 

72089 

- 

- 

- 

151 - 

00000 
16804 

16804 
50412 

67216 

672 160 
68896 

741056 

7410560 
70745 

748  1305 
71081 

7552386 
71417 

7623803 
71753 

7695556 

2 

1 

0 

1 

0 

4 

3 

2 

1 

0 

143 50 3  71938 
34 

71972 
34 

72006 
34 

72040 

- 

- 

15 - 
43500 

- 
4  72025 

3 

72028 
3 

7203  1 
3 

72034 
3 

72037 
3 

72040 

- 

35000 
- 

- 

- 

- 

76955560 
71938 

77027498 
71972 

77099470 
72006 

77171476 

771714760 
72025 

771786785 
72028 

771858813 
7203 1 

771930844 
72034 

772002878 
72037 

7720749  15 

50000 

OOOOO 

The answer given is  therefore 7.7207. The  correct 
answer  is 7.72075. 

generated using the methods described. In a machine 
with microprogram or conventional  control, it is 
likely :that  one general pseudo multiplier/divider 
routine would be  constructed.  This would have many 
branches  in  it, and  the particular flow path required 
would be set up by the function decoder. This would 
enable  multiplication, division and  the calculation of 
the  elementary  functions to be  performed very eco- 
nomically in  terms of the number of microinstructions 
or of the conventional  hardware  required. 

The methods described are  as  fast  or faster than  any 
conventional  subroutine  methods.  These  methods are 

extremely attractive for small machines where there 
is not,  perhaps, space to provide  conventional sub- 
routines. 
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