
J. E. Meggitt

Pseudo Division
and Pseudo Multiplication Processes

Abstract: Some digit-by-digit methods for the evaluation of the elementary functions are described.
The methods involve processes that resemble repeated-addition multiplication and repeated-
subtraction division. Consequently, the methods are easy to implement and the resultant execution
times are short.

Introduction

It is customary in computers to build an arithmetic
unit which is capable of adding, subtracting, multiply-
ing and possibly dividing. To perform more compli-
cated operations it is usual to write routines that use
these basic operations, operating on words at a time.
However, in certain cases, digit-by-digit methods exist
for the evaluation of certain functions. Some of these
are altractive because they can be made faster than the
corresponding subroutine methods, and also because
they do not need so much storage space; sophisticated
fast subroutines for evaluating the elementary functions
require the storage of many constants. Hence, it is
worthwhile considering whether more powerful arith-
metic units could be provided which would be capable
of performing these digit-by-digit methods.

The advent of microprogramming as a method of
computer control has made it very easy to construct
relatively complicated arithmetic units. The methods
described here are ideal for a machine with such con-
trol. However, these methods can also easily be
implemented in a conventional manner.

The first part of this paper will show flow diagrams
of four routines. These will form, respectively, ylx,
log[1 + (ylx)], tan- ’(ylx), and d* for given y and x.
A striking feature of these four routines is their
similarity. This means that a common microprogram
subroutine or common hardware may be used, in one
of four different modes of operation, and this, of
course, represents an economy in the number of micro-
instructions or in the amount of hardware required.
These ideas are particularly helpful to the designer of
small but powerful machines, but they may also have
applications for larger machines, where it is required
to have the elementary functions “built in.”

The second part of this paper shows how essentially,
by reversing the above routines, tan y, xey and xy2
may be generated.

21 0 In the paper it will, be supposed that base 10 arith-

metic is being used. This is by no means a restriction.
However, the fact that operations can be performed
with base 10 is an advantage in the area of small
machines where it may be inconvenient to provide
decimal-to-binary conversion.

Section 1: Division

The basic repeated subtraction process is, of course,
very well known indeed. For completeness the flow
diagram for it is shown in Fig. 1.

Initially register A contains an n digit word y , and
register B an n digit word x. x is subtracted from y as
many times as is possible until A becomes as small as it
can without going negative. The number of subtrac-
tions is recorded in a counter whose contents are
transferred to a shifting register Q . One too many
subtractions is performed and this requires a subse-
quent addition. It is possible of course to omit this
addition and alternately subtract and add, and this
possibility remains in the cases of the routines to be
described. However, for the sake of simplicity, this
complication will be omitted. (A) are now multiplied by
10 and the process is repeated. When it has been re-
peated n times as shown by the counter j , the (Q) are
the n digits of the quotient ylx.

To keep the digits of the answer less than 10, there
is a restriction y/x < 10. A must be a register of length
n + 1 to allow for the shift left. The answer is, of
course, exact, except for the remainder.

Modijied division

The modification to this basic routine which is pro-
posed here is to provide a modifier register M. This is
loaded during each subtraction cycle immediately
prior to subtraction. After each subtraction the pseudo
divisor which is in B is updated. This is done by
adding to the divisor, the contents of the modifier M
shifted j places to the right, where t h e j + lth quotient

IBM JOURNAL APRIL 1962

ENTER

I SET i = 0

ADD 1 TO COUNT (A) + (B)-(A)

SHIFT (a) ONE PLACE LEFT
COUNT TO LEAST SIGNIFICANT e SHIFT (A) ONE PLACE LEFT

I ADD 1 TO i

TEST i

Figure 1 Flow diagram for elementary divider.
Initially A contains y and B contains x. The quo-
tient is obtained in Q.

digit qj, is being formed. A flow diagram for this
process is shown in Fig. 2.

It will transpire roughly that the various routines
differ only in that the contents of different registers are
used to load the modifier. It will be found indeed that
in one case the digits qj are such that

log[l + (y / x)] = qj log(1 + 1O-j) ;
i

in another that

tan”(y/x) = q j tan” IO”
i

while in a third

Jylx = c qjl0”.
i

The precise ways in which the various routines work
will next be described. Flow diagrams for all of them
are shown together in Fig. 3.

To form log[l + (y/x)I
The method used is essentially Brigg’s method modified

so that the main part of the calculation is by a pseudo
division process, and handled in such a way that
accuracy is retained.

The method consists of choosing digits qj so that

y + x = x JJ (1 + lO”)Q,
j = O

where y and x are given It digit positive numbers. The
calculation of qj is made to resemble a division. When
this has been done,

log[l + (y / x)] = qj log(1 + 10-j) . (2)
j

The calculation is split into two parts. In the first
part, digits qj are calculated. In the second, the
logarithm is calculated from (2) using stored values
for log(1 + 10-j). This latter calculatiog turns out to
be a pseudo multiplication.

Figure 2 Flow diagram for elementary modified
divider.
Initially A contains y andB contains x. Thepseu-
do quotient is obtained in Q.

ENTER

1
SET i = 0

-
I

SET (M)

I
(A) - (B)-(A)

+O / / \ e Oh

1 1 I SHIFT (a) ONE PLACE LEFT ADD 1 TO COUNT
COUNT TO LEAST SIGNIFICANT

I I
I SHIFT (A) ONE PLACE LEFT I

9 ADD 1 TO i

21 1

IBM JOURNAL APRIL 1962

ENTER

1
SET j = 0

I I
TEST FUNCTION

KT(M) = 0 SET (M) = (8) SET (M) = 10-i (A) SET (M) = Z x
(PRECOMPUTED CONSTANT)

I I

1

?-l ADD 1 TO COUNT 1 SHIFT (Q) ONE PLACE LEFT
COUNT TO LEAST SIGNIFICANT

4l SHIFT (A) O N E PLACE LEFT

ri TEST FUNCTION
I I

I

SET (M) = 0 . 9 ~
(PRECOMPUTED CONSTANT)

N O T SQUARE ROOT

I
EX11

t

Figure 3 Flow diagram for modified divider.
Initially A contains y and B contains x . The pseudo quotient is obtained in Q. This routine is used for I) division,

21 2 2) Part I of log[l + (y lx)] calculation, 3) Part I of tan-l(ylx) calculation and 4) dylx calculation.

IBM JOURNAL APRIL 1962

Part I of calculation

The basic idea is to suppose that

- x n (I + 10-~)4~ - 1
j - 1

[k= 0 1
has been calculated, where qo qj- are digits that
have already been chosen, and that they have been
chosen in such a way as to make this expression as
small as possible. It is now required to find the next
digit qj. For this, successive calculations of

y p = y - x n (1 + 10-k)qk (1 + 10-j>. - 1) (3)
j - 1 1 [k = O 1

for a = 0, 1, 2 * qj are made. qj is defined by

Y41(j) 2 0 > Y,,+l (i) .
The idea is to try the effect of including further

factors (1 + lO-j), with the object of keeping y,")
positive but making it small.

It is convenient to define

The successive y's and x's may be calculated from
(3) and (4) by the recurrence relations
yu+l(j) = yu(i) - lo-jx (j)

xu+l(j) = x,(i) + lo-jxu(j) .
By design the y's get smaller and smaller. To keep
accuracy, it is convenient to do what is done in the
case of a true division and put
zu(j) = loiy (j) . (6)

Then for each j the recurrence relations become

(1

(5)

and these are the equations for the evaluation of qj.
qj is defined by

zql(j) >= 0 > zql+ (1). (8)

This is clearly a pseudo division process. z:j) is the
pseudo remainder and x,(j) is the pseudo divisor. It
only differs from a true division in that the pseudo
divisor is being constantly updated by the addition of
IO-jx,") to it instead of being held constant.

When qj has been found it is clear that the initial
conditions for the evaluation of qj+ are
zo(j+l) = loj+ly (j+ l) = lo'+' (i) = loz

xo(i+ l) = (i) .
Hence, when qj has been found, the process continues
for the extraction of qj+l with the pseudo remainder
zql(i) multiplied by 10. This exactly resembles what
happens in the case of a true division.

0 Y 4 l 41
(9)

''?J

When the process is first started it is also clear that

z0(O) = y

x0(O) = x .
(10)

Hence, the following algorithm is established:
If y is divided by x using a long division repeated

subtraction process wherein the divisor x is continually
updated by having 10-jx added to it during the for-
mation of the quotient digit, qj, then the pseudo
quotient qo, ql , qz - is such that

log[l + (y / x)] = q j log(1 + 10"). (11)
j = O

The flow chart in Fig. 3 contains this process and
shows it explicitly. It is identical for this case, with
that shown in Fig. 1 for a true division except for the
provision of the modifier register Mas shown in Fig. 2,
whose contents update the divisor. Each time a sub-
traction is performed the modifier is set with the
divisor itself, so that the recurrence relations (7) are
satisfied.

Magnitudes of x and y

It is desirable that all the quotient digits qj should be
less than 10. As in the case of a true division, this
implies an upper restriction on y/x. Indeed, for
qo < 10, we must have

y / x < 21° - 1 .

For subsequent digits the condition is automatically
met because it is certainly met for a true division, and
in the pseudo division the divisor is being continually
increased. When y/x is small, the calculation
approaches a true division and not surprisingly

10gCl + (Y/X>l YlX

Register lengths

x and y are each n digit numbers with, it is supposed,
their decimal points aligned. However, since the num-
ber contained in B grows during the calculation, B
may have to be a register of length greater than n. The
contents of B at the end of the calculation are, in fact,

x n (I + 1 0 - ~) 4 k
k = O

= y + x by construction,

so that it is obvious that a register of length n + 1 for
B will suffice. The remainder register A , will also never
have to contain a number greater than ten times that
in B. Hence, the length of register A is made n + 2.
Q is given a length of n, and the pseudo quotient is
calculated to n digits. Considerations of accuracy
show that it is not worthwhile calculating more digits.
Table 1 shows a typical calculation, with the successive
contents of registers shown explicitly. 21 3

IBM JOURNAL APRIL 1962

Accuracy

Approximations only occur when the shifted modifier
is added to the divisor. However, it is easy to see the
effect of the figures dropped in this shift. It will be
supposed that the dropped figures are used for
rounding in the addition. The first round-off errors
occur when q1 is being calculated. Let 6xk be the

Table I Example of formation of log[l + (y lx)] .
y = 67719 and x = 21608.

rounding error introduced at the kih rounding. Then,
when q1 has been formed, (A) will be in error by

6y, = (41 - 1)6x, + (41 - 2)6x2 + . * . (12)

while (B) will be in error by

6x1 + 6x2 + . * * + axq1 . (13)

Before q2 is formed,(A) are shifted left. Hence, if we
consider only errors that are caused while q1 is being
formed, there will be an error of

6 y , = lO[(q, - 1)6x, + (41 - 2)6x, + *]

+ q2(8x1 + - . + ax,,)
j B A Count Q in A when q2 has been found and so on.

in A of 0 21608 67719
21608 2 1608 1

When 4,- has been formed, there will be an error

43216 461 11
43216 43216

86432 2895

1 86432 28950

2 86432 289500
864 86432

2

00002

6y,-, = 1O"-2[(ql - 1)6x, + (41 - 2)6x, + * . * 1
+ (10"-~q, + 10" -~q, + + qn-l)

x (6x1 + 6x2 + . * + JX,,). (14)

In the worst case q1 = q2 = q3 = * * = 9

6 x l = 6 x 2 = ' * . = 6 .

00020 It is then found that

6 y , - , = 45 x 10"-26.
87296 203068 1

873 87296

88169 1 15772 2
882 88169

89051 27603

3 89051 276030
. 89 8905 1

89140 186979
89 89140

89229 97839
89 89229

89318 8610

-

-

L_

3

.~

The effect of round-off errors that occur when q2 is
formed is identical except that it is ten times as small,
and so on. Thus, in the worst case, the effect of all
rounding errors is to produce a total error in A, when
qn-l has been formed,

6y,-, = 45 x 10"-26(1 + 10" + + a . e)

00203 = 50 X 10"-'6. (16)
When 4.- , has been formed,

1 (B) - Y + x

2
qn- is found effectively by the true division of (A) by
(B) since, at this stage the effect of the modifier is
negligible. Clearly, the error in (A) predominates, and
due to this cause there is an error in qn-l of

3 50 x 10'"2[S/(y + x)]. (17)

4 89318 86100 02033 Because of the rounding in the addition and because
it is supposed that at least one of y or x contains n

20330 significant digits,

[6/(y + x)] < 5 x lo-". (18)

Zog,[l + (ylx)] = 2 log, 2 + 3 log, 1.01 + 3 log, 1.001 The worst case error in qn-l is, therefore, less than
A pseudo multiplication then causes the evaluation of

giving log,[l + (y l x)] = 1.4192. If more digits of 2.5. Thus, the last digit of the quotient will never be
the pseudo quotient are calculated a value for in error by more than 2.5. Due to the fact, however,
log,[l + (y lx)] = 1.419240 is obtained which is in fact that it is likely for round-off errors to compensate, it
exact. is usual for qn- to be exact in typical calculations.

21 4 (The probability of this happening may, in fact, be

IBM JOURNAL APRIL 1962

ENTER

1
SET j = n - 1

1 -
TEST F U N C T I O N

L O G

T -

SET (8) = IOi L O G (1 + 10-1) SET (8) = IOi TAN"I0-1

1

SHIFT (Q) O N E PLACE RIGHT
LEAST S I G N I F I C A N T T O C O U N T

,

(A) + (B) - (A) SHIFT (A) O N E PLACE RIGHT

d 1
1

SUB. 1 FROM j

TEST i I
j > O i < O

EX I T

Figure 4 Flow diagram for multiplier.
Initially multiplier is in Q, and B contains multiplicand. The product is obtained in A . This routine is used for
I) multiplication, 2) Part 2 of log11 + (y lx)] calculation and 3) Part 2 of tan-'(ylx) calculation.

calculated.) Therefore, the method is inherently an
accurate one.

Part 2 of calculation

The second part of the calculation consists of finding
log[l + (y / x)] from (11). The base to which the
logarithm is calculated is determined by the base to
which the stored constantslog(1 + 10-j) are calculated.
It should be observed that log,(l + 10-j) - 10-j.

Thus, the decimal number qo .q1qzq3 is already
a fairly close approximation to log,[l + (y lx)] .
Indeed, if working is carried to n figures, only about
the first half of the qj cause corrections to be made.

The formation of log[l + (y /x)] from (1 1) clearly
resembles a multiplication. The number in Q is the

multiplier, while the multiplicand is given the value
log(1 + 10-j) while multiplication by the digit qj is
taking place. It is, therefore, convenient to use a
pseudo multiplier for this operation. The operation is
identical to an ordinary multiplier save that the multi-
plicand is set from some read-only store to the required
value, as each digit of the multiplier is processed.
Figure 4 shows the process explicitly and also shows
how it is combined with a true multiplication. It is
good enough, of course, to set

10' log(1 + lo-j) = 1 (19)

while the least significant half of the multiplier digits
are processed. This economizes on the number of
stored constants required. 21 5

IBM JOURNAL APRIL 1962

The intention is that this routine should be no more
than a particular mode of the multiplication routine.
I t is, of course, true that the pseudo multiplication and
division could be combined into a single process.
They have, however, been split so that they may be
combined with true multiplication and division.

Execution times
The time to form log[l + (y/x)] using this method will
be about three multiply times, and, of course, this in-
cludes the division of y by x which conventionally
would have to be done before the calculation of the
logarithm. This assertion may be slightly unfair since
it assumes that multiplication would be performed by
a repeated addition process, without the use of any
tricks for speeding it up. However, the pseudo pro-
cesses described are also performed without any tricks
and it may be that similar tricks are applicable in all
cases.

Log z

If it is wished to evaluate log z, where z is an n digit
number with the decimal point to the left, then the
complement of z should be put in A and z itself into
B before the process is begun.

Then y = 1 - z so that

log[l + (y/x)l = log[l + (1 - z)/z]
(20)

= - log z

y / x will not be too large if z is not too small. This
makes an excellent method of finding log z if 0.1 5 z
< 1, and so this method can be used for finding the
logarithm of the fractional part of a floating point
number.

To form tan"(y/x)

The method used is one that resembles Brigg's method,
but it is applied to complex logarithms. The central
idea is to find integers qj such that

(X + iy) (1 - i10-j)Q = R , (21)

where x and y are n digit positive numbers and R
is real. When this is done

j = O

lOg(x + i ~) = log R - q j log(1 - i10-j) . (22)
j = O

The imaginary part of this equation gives

tan-'(y/x) = q j tan-' 1 0 - j . (23)

Calculation is again split into two parts. In the first,
integers qj are calculated by a pseudo division process.
In the second tan-l(y/x) is found by a pseudo multi-
plication, using stored values for tan-' 10-j.

Part I of calculation

The idea is to suppose that (x + i y) (1 - ilO-k)qk

j = O

j - 1

21 6 k = O

has been calculated, where qo * qj- are digits that
have already been chosen in such a way as to make
the imaginary part of this expression as small as
possible, and to consider what is required to find qj.
For this, successive calculations of

x a (j) + iy,"' = (x + iy) IT (1 - i10-k)yl - ilo-jy
j - 1

k = O (24)
are made for a = 0, 1 ,2 qj. qj is defined by

That is, y'j) must be made as small as possible, while
keeping it positive.

By design, the y's get smaller as the process is con-
tinued. Hence, to keep accuracy, it is convenient to
write

The recurrence relations then become

These are obeyed repeatedly until

z q y 2 0 > zqj+ 1 (j) . (28)

This is again a pseudo division process with z$) the
pseudo remainder and xa(j) the pseudo divisor. In this
case, however, the pseudo divisor is repeatedly up-
dated by adding to it lO-'jz/). As in the case of
logarithms, it is clear that when the iteration for qj+l
is started, initial conditions are

so that the pseudo remainder has to be shifted one
place to the left. Also, at the beginning of the entire
process

Hence, the following algorithm is established. If y
is divided by x using a long division repeated sub-
traction process wherein the divisor is continually up-
dated by having lO-'jz added to it (z the remainder)
during the formation of the quotient digit qj , then the
pseudo quotient qoql * - - is such that

tan-l(y/x) = qj tan-' 10". (31)

The flow chart in Fig. 3 shows the process explicitly
and it only differs from that for the formation of

j = O

IBM JOURNAL APRIL 1962

I stead of to (B).

Magnitudes of x and y

Since 0 5 tan-l(y/x) 5 4 2 it is obvious qo 5 2.
Also, since the divisor is continually being increased,

it is clear that all the other pseudo quotient digits are
less than 10. Hence, all the quotient digits are less
than 10 and there are no restrictions on the ratio ylx.

J A

Table 2 Example of formation of tan-'(y/x).
y = 30912 and x = 59438.

i B A Count Q

0 59438 30912
~~ ~

1 59438 309120 00000
3091 59438

62529 249682
2497 62529

65026 187153
1872 65026

66898 122127
1221 66898

68119 55229

2 68119 552290
55 681 19

68174 484171
48 68 174

68222 415997
42 68222

68264 347775
35 68264

68299 27951 1
28 68299

68327 21 1212
21 68327

68348 142885
14 68348

68362 74537
7 68362

68369 6175

"

3 68369 61750 00048

4 68369 617500 00480
68369

549131 1

At this stage it becomes a straight division process
giving

68369 2179 9
04809

A pseudo multiplication then causes the evaluation of
tan-'(ylx) = 4 tan-' 0.1 + 8 tan" 0.01 + 9 tan"
0.0001 giving tan "(ylx) = 0.4796. Zfmore digits of the
pseudo quotient are calculated tan- (y l x) = 0.479578.
The exact answer is 0.479574.

Register lengths

x and y are each n digit numbers with their decimal
points aligned. At the end of the process, B will contain
approximately the number R from (21), and

R = [X + iyl n 11 - ilO"1Q (32)
j = O

00004 from which it may be shown

R 5 21x + iy] _I 2 J j max(x, y) . (33)

Hence, a register of length n + 1 will certainly ac-
commodate R. Therefore, as for the logarithm routine,
it is sufficient to make B a register of length n + 1 and
A a register of length n + 2.

Table 2 shows a typical calculation set out in detail.

Accuracy
The discussion of accuracy is virtually the same as the
discussion for logarithms, since, again the only errors
that occur, occur when the contents of the modifier
are shifted and added to update the divisor. Errors
occur because of the figures dropped. The previous
discussion applies to all pseudo division processes of
this type.

The result, therefore, is that the worst possible error
in the last digit of the quotient q,,l-l is

50 x 10'"26/R . (34)

In this case too, therefore, the worst possible error
is of 2.5 in the last digit of the pseudo quotient, and,
of course, owing to the cancellation of errors, it is
usual for qn- to be exact. 21 7

1BM JOURNAL APRIL 1962

9 Part 2 of calculation

Tan"(y/x) is now calculated from (3 1) . This is done
by means of a pseudo multiplication and is exactly as
described for the logarithm and is shown in Fig. 4.
However, the multiplicand is set to 10' tan" 10" for
successive values o f j instead of to 10' log(1 + 10-j).
For 213 of the values of j it is accurate enough to set

1Ojtan" 10" = 1 (35)

and this, therefore, saves stored constants.

Execution times

The time to form tan"(y/x) using this method is
about three multiply times and, of course, this one
also gains a division.

To form tan-' z, it is a very simple matter to put

y = 10"z

x = 10"

for a suitable scale factor lo", though then, of course,
the extra division facility is wasted.

Assessment

The two routines that have been described give
accurate values of log[l + (y/x)] and tan"(y/x) in
three multiply times which is quicker than any of the
current subroutine methods. They have the advantage
of simplicity since they merely employ pseudo dividers
and pseudo multipliers. Moreover, they are not unduly
expensive with stored constants.

9 Square roots J y T

It is also tempting to use the modified divider that has
been described for the extraction of square roots. This
can be done at the expense of slightly more complica-
tion. The method is the standard digit by digit one.
The flow diagram is shown also in Fig. 3 . It is seen
that the only difference from the previous routines is
that the modifier is set to a constant, while the pseudo
divisor is altered between the extraction of successive
digits.

Integers qj are found such that
2

y = x q,10"
L = O I

so tliat

(37)

Jylx = 1 qjlo-'
j = O

Here, it is supposed that qo qj- have been
found and it is required to find qj. This is done by
calculating successively

(39)

for a = 0, 1,2 - * . The object again is to make yo") as
21 8 small as possible but to keep it positive. Define

IBM JOURNAL APRIL 1962

This can be calculated from the recurrence relation

As before, for accuracy's sake, it is convenient to put
za(j) = lOjy,") and so get the recurrence relations

(43)

These equations are iterated until zS(j) goes negative.
That is, qj is defined by

zqj(j) >= 0 > zq j+ l (j) . (44)

These equations are again like those that arise in a
division process. z,(j) is the remainder, and x,(j) is the
pseudo divisor, which is continually being updated by
the addition of the constant 2x, shifted j places.

The initial conditions for the extraction of qj+ are,
however, more complicated. Clearly

zo(j+ 1) = lozqj(j) .

However
x o (j + 1) = (j) - xlo- j + xlo- j - 1 .

xq.t (45)
Thus, before the calculation of q j+ l the pseudo

divisor must be updated by subtracting from it
0.9 x IO-jx, and this constitutes the extra complication.

At the beginning of the process

(46)
x0(O) = x .

, I

Hence, the following algorithm is obtained. If a
pseudo division of y by x is performed, where the
modifier is held constant at 2x, and if between the
calculation of successive digits 0.9 x 10"x is sub-
tracted from the divisor, then the quotient is JTx.
Of course the numbers 2x and 0 . 9 ~ can be calculated
before the process is begun.

This routine probably looks more familiar if it is
performed with x = 1. It should be observed that it
is very easy to set the modifier at 2x in a binary
machine and also that in a binary machine the factor 0.9
that occurs in the subtraction is replaced by a factor 0.1.

9 Magnitudes of numbers

It is convenient to suppose that y and x are given as
numbers with n significant digits and that either their
decimal points are aligned or else misaligned by one
digit. If they are aligned this implies that 10 > y/x >
1/10, If they are misaligned, y is shifted one place left
to align them before calculation is begun. In the latter

digits will be less than 10.

Sizes of registers

At the end of the process B will contain approximately

2 JXy. (47)

x 5 C, the largest n digit number y 5 IOC.

Hence,

2 4 5 5 2410 c . (48)

Hence, as before, a register of length n + 1 will
suffice for B and a register of n + 2 for A . A typical
calculation is shown in Table 3.

Accuracy

Errors occur when the shifted modifier updates the
divisor and figures are dropped, and also, when the
divisor is updated between the extraction of successive

J A Count y

Table3 Exampleofformation of square root f i
y = 77208, X = 16804,2x = 33608,0.9x = 15124.

i B A Count Q

0 16804 77208 00000
33608 16804

50412 60404 1
33608 50412

84020 9992 2
15124-

1 68896 99920
3361 68896

72257 3 1024 1
1512-

2 70745 310240
336 70745

7 108 1 239495
336 71081

71417 168414
336 71417

71753 96997
336 71753

72089 25244

"

151 -

00002

0002 1

3 71938 252440
34 71938

71972 180502 1
34 71972

72006 108530 2
34 72006

72040 36524 3
15-

002 14

4 72025
3

365240
72025

02143

72028
3

7203 1
3

2932 15 1
72028

221 187 2
7203 1

72034
3

72037
3

72040

149156 3
72034

77122 4
72037

5085 5

21435

The answer is therefore 2.1435.
If the process is continued it gives 2.143507, which

happens to be exact. Note that it is assumed y and x
have their decimal points aligned.

digits. The first errors are those that have been en-
countered previously. The others are of the same type
but occur in the worst case one tenth as often. Hence,
from (16) there is a worst case error of about

55 x 10"-26 (49)

in A when qn- has been formed.
qn- was obtained essentially by a division of (A) by

(B). B contains at this time 2&. Hence, the worst
case error in qn-

- (55 x 10n-2/2)(6/Jxy). (50)

Since, by design x and y each contain, at least, n
significant digits

GIJXy < 5 x lo-". (5 0

This leads to a worst case error in qn- of 1.5 and 21 9

IBM JOURNAL APRIL 1962

so this routine has the same kind of accuracy as the
others.

Conclusion

It is, therefore, possible to make a simple pseudo
divider and a simple pseudo multiplier which between
them, operating in different modes, can compute ylx,
log[l + (Y/X)l, tan-'(y/x), Jylx.
Section 2: Multiplication

The processes that have been described in Section 1
may be reversed. This reversal leads to methods for
forming exponentials, tangents and squares. In the
reverse processes, multiplications become divisions
and divisions multiplications. In the multiplications
that result, it is naturally expected that the least sig-
nificant digit of the multiplier will be processed first
and that the answer will be obtained as the ratio of
the contents of registers A and B. This implies that an
ultimate extra division is necessary.

It transpires, however, that accurate methods for
forming exponentials and squares can be devised that
avoid this final division, but in the multiplications that
they contain, the order of multiplication is changed
and the most significant digit of the multiplier is pro-
cessed first. In the case of the tangent, however, the
method must be the exact reverse of the method for
the inverse tangent. This makes the methods slightly
different from each other.

To form exponentials

The method to be described enables x(ep - 1) to be
calculated for given positive p and x. p is expressed as

p = qjlOg(1 + lo-]), (52)
j = O

for integers qj. Then, clearly

x(eP - 1) = x n (1 + 1 O - j) q j - (53) [j = O

If p were negative, it would be possible to make an
expansion of p in terms of log(1 - IO-j). This would
be the reverse process of what would be done in finding
log[l - (y / x)] for positive x and y. This was not treated
explicitly in the first section of the paper, but the reader
should observe that the only difference for that case
is that the pseudo divisor should be updated by a
subtraction rather than by an addition.

In floating point applications, it is probably
sufficient, however, for p to be positive and so only
this case will be dealt with now.

The calculation is split into two parts. In the first,
integers qj are found by a pseudo division, and in the
second the exponential is evaluated by a pseudo
multiplication.

Part 1

To find integers qj a division of p is made. The divisor
220 is set to log(1 + 10-Jj from a read only store while the

IBM JOURNAL APRIL 1962

digit qj is being formed. Figure 5 shows the process
explicitly, and it is clearly the reverse of what is shown
in Fig. 4. Of course, constants lOjlog(1 + 10-j) are
taken from the same store.

Magnitude of p

It is necessary to have all digits qj less than 10. This
means that p < 10 log 2 for qo < 10, while this con-
dition is met automatically for other digits since
log(1 + 10-j) < 10 log(1 4- lo-j-1) . (54)
p and the constants 10' log(1 + 10-j) must have their
decimal points aligned. The constants are stored as n
digit numbers, the decimal point being to the left. Hence,
the number p must be shifted if necessary before the
process is begun. n pseudo quotient digits are calcu-
lated. The accuracy to which p is known will not
warrant the calculation of further digits.

Part 2

To calculate

j = O 1 (55)

a pseudo multiplication is performed using qo qn-
as the pseudo multiplier, and starting with the most
significant digit qo.

For this, suppose that

has already been calculated and that it is now required
to introduce a further factor (1 + 10-j)q~. Define

y,"' = x n (1 + 1 0 - k) y l + 10-jy - 1
j - t

[k = O
(57)

xa(i) =

Then, for successive a's, the recurrence relations

x a + l (j) = xa(i) + lo - jxa(j)

are obtained and these are iterated for a = 0 * qj - 1.
It is convenient to make

za(i) = lojy (i) .
Then the recurrence relations become

a (59)

These equations now resemble a multiplication;
z i j) is the partial sum, while x /) is the multiplicand
which is being continually updated by the addition of
itself shifted j places. qo * - - 4.- is the multiplier.

When qj has been processed, initial conditions for
the processing of qj+ are

zo(i+ 1) = loz (i)

x o (i + l) = (i) .
41

Hence, a pseudo multiplication is being made, where
(61) x is the pseudo multiplicand that is repeatedly updated,

There is, therefore, a shift left of the partial product identical with that for a true multiplication (multi- The flow chart in Fig. 6 shows this process. It is

between the processing of successive digits and this is plication from the left) except for the provision of the
exactly what happens in the case of a true multiplica-
tion where the most significant digit is processed first. plicand after each successive addition. modifier register which updates the pseudo multi-

If it is required to calculate xep rather than x(eP - I),

XqJ and qo . qn- is the multiplier.

When the process is started

then the partial sum register A should initially be set
(62) at x. Of course, x may be set at one for the calculation

of ep but use of the method's full power is attractive.

Figure 5 Flow diagram for divider.
A contains dividend and B contains divisor. The quotient appears in Q. This routine is used for 1) division, 2) Part I
of x(ep - I) calculation and 3) Part 1 of tan x calculation.

ENTER

1
SET j = 0

TEST FUNCTION

EXP

v

SET (B) = IOi L O G (1 + 10-j)

v

(A) - (B)-(A)

li

ADD 1 T O C O U N T (A) + (B) - (A)

SHIFT (Q) O N E PLACE LEFT

@ SHIFT (A) O N E PLACE LEFT

4
ADD 1 TO j

1
TEST i

j < n j > n

EXIT
221

IBM JOURNAL APRIL 1962

ENTER

1

I SET i = n - 1 (0)

I
SHIFT (Q) ONE PLACE RIGHT (LEFT)

LEAST (MOST) SIGNIFICANT TO COUNT

I
TEST FUNCTION

I SUBTRACT 1 FROMCOUNT I
I I

I I I

(PRECOMWTED CONSTANT)

+ SHIFT (A) ONE PLACE RIGHT (LEFT)

TEST FUNCTION

I
EXIT

c
Figure

1
I

NOT SQUARE

+ SUBTRACT (ADD) 1 FROM (TO) j

6 Flow diagram for modified multiplier.
B contains pseudo multiplicand, Q contains pseudo multiplier, and A contains pseudo product. This routine is used
for I) multiplication, 2) Part2of x(ep - I) calculation, 3) Part 2 of tan p calculation and 4) xq2 calculation. Where
choice is indicated, multiply and tangent routines employ the first possibility, while exp and square routines employ
the second.

Register sizes that register B does not overflow. In an application
where floating point arithmetic is used, it is likely

As the calculation progresses, the size of the pseudo that x will be a number with n significant digits and
multiplicand increases. Eventually it will approxi- that 1 5 ep < 10. In this case B should be a register

222 mately equal xep, and so care must be taken to see of length n + 1.

IBM JOURNAL APRIL 1962

Table 4 Example of formation of x(ep - 1).
x = 21608 and p = 1.4192. An initial pseudo
division of p gives (Q) = 20330. This pseudo
division expresses p as p = 2 loge 2 + 3 loge
1.01 + 3 log, 1.001.

j B A Count Q

0 2 1608
2 1608

43216
43216

86432

1 86432

2 86432
864

87296
873

88169
882

89051

3 89051
89

89 140
89

89229
89

89318

00000
21608

2 1608
43216

64824

648240

6482400
86432

6568832
87296

6656128
88169

6744297

67442970
8905 1

67532021
89140

67621161
89229

67710390

2

1

0

0

3

2

1

0

3

2

1

0

03300

3 3000

30000

00000

The method, therefore, gives the answer 67710. The
correct answer is 677154. The decimal point is aligned
with that in the number x . There appears to be a large
error. However, this disappears i f (Q) are calculated to
6figures rather than 5 and the process is continued one
stage further. I f p is known, however, only to the number
offigures shown, this further accuracy is spurious.

At the end of the process, A will contain a number
of similar size, except that it has been shifted left n - 1
times. Hence, A must be a register of length 2n. It is
unfortunate that A has to be such a long register.
However, it can be joined up with register Q as is

often done, since the number of digits in Q decreases
as the number in A increases.

Accuracy

The number that is in A at the end of the process is
the required answer and it is necessary to find how
many digits of it are accurate. Inaccuracies occur in
the pseudo multiplication process, due to the dropping
of figures when the pseudo multiplicand is updated.
The way in which these affect the contents of A is
exactly the same way in which the contents of A were
affected in the corresponding pseudo division process.
Hence, from (16), the error in (A) when qn-l has
been processed is at worst

50 x lO'"'6. (63)

Because of the rounding in the modification, 6 = 0.5.
Thus, there is an error of about 2.5 in the n - lth digit
from the right in A . (A) are, therefore, shifted n - 1
places to the right. A now contains a number of length
n + 1 with its decimal point aligned with that in the
number x . Its least significant digit is in error by at
most 3.

Inaccuracies also occur because in the preliminary
division only n digits of the pseudo quotient have
been calculated. However, as has been explained, this
is only the accuracy that is warranted and this in-
accuracy is inherent in the number system used.

The method, therefore, is inherently an accurate one.
Table 4 shows a typical calculation with the successive
contents of registers shown.

Execution times

xep or alternatively x(eP - 1) is formed in approxi-
mately three multiply times, so this is certainly a fast
method.

To form tangents

The method to be described enables tan p to be cal-
culated. The answer is obtained as a ratio and as has
been explained, a final division is necessary.

It is supposed that 0 4 p 5 7~12. p is expressed as

p = qjtan" 10" (64)

for integers qj. An evaluation of

x + iy = R (1 + ilO-j)q' (65)

is then made for some real R. Clearly then

tan p = y / x . (66)

The integers qj are obtained by means of a pseudo
division, and x and y are then calculated by means of
a pseudo multiplication.

Part I

The pseudo division is shown in Fig. 5. It is identical
with the corresponding process used in forming the

j = O

j = O

223

IBM JOURNAL APRIL 1962

exponential, except constants 10' tan" 10" are used
instead of 10' log(1 + 10-j).

Magnitudes of p

Since p 5 4 2 , qo 5 2; therefore since

tan" 10" < 10 tan" lo-j-' (67)
all other digits qj are less than ten.

As in the case of the exponential, p and the constants
10' tan" 10-j must have their decimal points aligned.
The number p is, therefore, shifted if necessary. n
pseudo quotient digits are calculated.

Part 2

To calculate

R n (1 + ilO-j)Q
j = o

a pseudo multiplication is performed using qo * qn-
as the pseudo multiplier, and starting with the least
significant digit qn- 1. Define

n - 1
x,(j) + iy,") = R n (1 + ilO-k)qk(l + il0-3" (69)

k = j + 1

and put zo(j) = 1Ojy;j). (70)

Then for successive values of a, the recurrence
relations

are obtained, and these are iterated for a = 0 qj - 1.
Again these equations resemble a multiplication.

z,(') is the partial product. x,(j) is the pseudo multi-
plicand which is continually being updated by the
subtraction of z,(i) shifted 2 j places. qo * qn-l is
the multiplier.

After qj has been processed, qj- is processed and
the initial conditions are

At the beginning of the process

(73)

Thus, a pseudo multiplication of R by qo * qn-
is made, starting with the least significant digit, qn- l .
This is exactly like a true multiplaction except for the
updating by subtraction, of the multiplicand.

The flow chart for this process is shown in Fig. 6
also.

digit number, and register B is made of length n + 1.
A never has to contain a number more than ten
times that in B, so A is made of length n + 2. An
example is shown in Table 5.

Accuracy

The contents of A and B at the end of the process are
in error due to the dropping of figures when the shifted
contents of M update the pseudo multiplicand.

The effect of this cause is easily seen. The final ratio
of (B) to (A) will be tan(p + 6,) for some small a,,
instead of tan p. It is convenient to discuss errors in
terms of 6,. If the method for forming an inverse
tangent is applied to (B) and (A) , it will be found that
step by step their contents approximate their con-

Table 5 Example of formation of tan p . p = 0.4796.
An initialpseudo division gives (Q) = 04809. This
pseudo division expresses p asp = 4 tan-10.1 + 8
tan-' 0.01 + 9 t a r 1 0.0001. (B) are initially set
for convenience at 1OOOOO.

.i B A Count Q

4 100000 00000 9 00480
""" ""_
""" ""_ -
1 OOOOO 900000 0

3 100000 90000 0 00048

2 100000 9000 8 00004
1 100000

99999 109000 7
11 99999

99988 208999 6
21 99988

99967 308987 5
31 99967

99936 408954 4
41 99936

99895 508890 3
51 99895

99844 608785 2
61 99844

Register sizes

The pseudo multiplicand decreases as the process con- 71 99783
tinues. Initially, it contains R, which is arbitrary. For

99183 708629 1

224 accuracy's sake, it is set to the largest convenient n + 1 99712 808412 0

IBM JOURNAL APRIL 1962 I

j B A Count Q

1 997 12 80841 4 00000
808 997 12

98904 180553 3
1806 98904

97098 279457 2
2795 97098

94303 376555 1
3766 94303

90537 470858 0

0 90537 47085 0 00000

A division of (A) by (B) leads to a value of tan
p = 0.5201. The correct answer is 0.52010.

Values of sin p = 0.4614 and cos p = 0.8872 can
also be obtained. The correct values are 0.46142 and
0.88725.

tents during the formation of the tangent. Actually,
after digits qo * * qj have been formed in the inverse
tangent process, the contents of B and A will exceed
the corresponding contents in the tangent process by a
factor n:=o (1 + 10-2k)qk. However, rounding errors
occur similarly in both processes. If compensating
errors occur in the inverse process at exactly those
places where errors occurred in the forward process,
then tan" tan(p + 6,) will be calculated as p , there
being an error 6,. From the discussion of errors for
the inverse tangent process it is, therefore, clear that 6,
is at worst 2.5 in the least significant figure of p , and
so this gives a measure of the error in the tangent
process. In short, the dropping of figures when the
modification is performed gives the same errors in the
tangent as in the inverse tangent process.

Trigonometrical functions

This method produces two numbers, x and y whose
ratio is tan p . To obtain tan p a further division must be
performed and obviously care has to be taken to see
that x is not too small.

It is also possible to form sin p and cos p from

sin p = Jy2 / (x2 + y 2) cos p = Jx2 / (x2 + y') . (74)

These may be calculated by first squaring x and y
and then using the square root process previously
described. In a microprogram machine in particular,
the necessary control for this is easy to provide.

If the sines and cosines are held in n digit stores with
the decimal point one place from the left-hand end,

errors due to the trigonometrical part of the method
will never exceed 2.5 in the least significant digit place.

Execution times

x and y are obtained in three multiply times. Tan p
may be calculated in four times, while sin p and cos p
will take approximately seven multiply times.

To form squares

The square root method may also be reversed, to give
a method for finding squares. This, of course, is not
of much value but is mentioned here for interest's
sake. It enables xq2 to be calculated for given x and q.

A pseudo multiplication is performed. x is the
initial pseudo multiplicand and q is the multiplier and
multiplication is performed starting with the most
significant digit of q. At each stage, the pseudo multi-
plicand is updated in exactly the way the pseudo
divisor was updated in the square root process. The
pseudo product is then xq2. The proof of this follows
almost exactly the proof for the square root method.

Register sizes

It is convenient to suppose that x and q are numbers
with n significant digits. It may then be shown that
register B has to have length n + 2 to allow for the
growth of the pseudo multiplicand. Register A has to
have length 2n + 1 to allow for the succession of
n - 1 shifts left.

Accuracy

The way in which errors occur is exactly the way
errors occur in the square root routine. Hence, there
is an error in (A) at worst of 55 x 10'"26 when qn-l
has been processed. Accordingly, at the end of the
process the contents of A are shifted right n - 1
places, giving an error of not more than 3 in the least
significant digit of (A) , (A) being now a number with
n, n + 1 or n + 2 significant digits.

Decimal points

If it is assumed that the n digit numbers x and q have
their decimal point one place from the left-hand end,
that is 1 5 x, q < 10, then the decimal point of xq2
is aligned with them; that is 1 2 xq2 < 1000.

This routine is also shown in Fig. 6, and a worked
exaniple is included in Table 6.

Assessment

This method enables xq2 to be formed in two multiply
times. It seems it may have some value in certain
applications.

Conclusion

The second section has shown how x(eP - l), tan p ,
sin p , cos p, xq2 may be calculated using pseudo
multipliers and dividers.

All the elementary functions may, therefore, be 225

IBM JOURNAL APRIL 1962

Table 6 Example of formation of x$. x = 1.6804, 2x = 3.3608, 0 . 9 ~ = 1.5124, q = 2.1435.

j B A Count Q j B A Count Q

1

2

0 16804
33608

50412
33608

84020

-

-

15124-

68896
3361

72257
1512-

70745
336

71081
336

71417
336

71753
336

72089

-

-

-

151 -

00000
16804

16804
50412

67216

672 160
68896

741056

7410560
70745

748 1305
71081

7552386
71417

7623803
71753

7695556

2

1

0

1

0

4

3

2

1

0

143 50 3 71938
34

71972
34

72006
34

72040

-

-

15 -
43500

-
4 72025

3

72028
3

7203 1
3

72034
3

72037
3

72040

-

35000
-

-

-

-

76955560
71938

77027498
71972

77099470
72006

77171476

771714760
72025

771786785
72028

771858813
7203 1

771930844
72034

772002878
72037

7720749 15

50000

OOOOO

The answer given is therefore 7.7207. The correct
answer is 7.72075.

generated using the methods described. In a machine
with microprogram or conventional control, it is
likely :that one general pseudo multiplier/divider
routine would be constructed. This would have many
branches in it, and the particular flow path required
would be set up by the function decoder. This would
enable multiplication, division and the calculation of
the elementary functions to be performed very eco-
nomically in terms of the number of microinstructions
or of the conventional hardware required.

The methods described are as fast or faster than any
conventional subroutine methods. These methods are

extremely attractive for small machines where there
is not, perhaps, space to provide conventional sub-
routines.

References

1 . A. Ralston and H. S. Wilf, Mathematical Methods for
Digital Computers, John Wiley and Sons, Inc., 1960.

2. J. H. Wensley, “A Class of Non-Analytical Iterative Pro-
cesses,” The Computer Journal, 1, No. 4, 163 (Jan. 1959).

Received August 29,1961

226

IBM JOURNAL APRIL 1962

