Program Encapsulation on the HP-42S

Erik Ehrling #1097

Back in Datafile VIONG in an article called “FOCAL Plus — The Language for
Real Handheld Hackers!” Simon Bradshaw speaks about various improvements
that he would like to see in a new version of the FOCAL programming language of
the HP-41C/V/X and HP-42S calculators. One of these improvements would be the
ability to “save the stack at the beginning of a subroutine and recover it at the end”
— the purpose of this article is to demonstrate how this by some simple measures
can be achieved on the HP-42S.

By using the technique described here it is possible to both save the stack contents
and the contents of the numbered registers. Further, by only using numeric/single
character labels and numbered registers within a program all internal labels and
storage registers can be hidden to the outside. No named variables would then be
floating around after the program has finished and only the first program label
would be visible in the list of programs (e.g. when pressing XEQ).

As anyone using a HP-42S with 32K (or an emulator for that matter) would have
experienced, the memory easily gets cluttered by a lot of variables and program
labels — especially as the HP-42S lacks a catalog structure. Using program
encapsulation would in this case help to improve the situation.

Saving the stack

The main idea behind this technique is very simple. Just use a set of named
variables with reserved names (reserved in the sense that no other program should
use them) - here the syntax X prgname, Y_prgname, Z_prgname, T prgname,
L_prgname, R_prgname is suggested. These variables should then be used for
storing the contents of the four stack levels, the LASTX register and the numbered
registers (REGS).

For example the start of a program could look like:

a1 LEL "GPI" 16 STO "L_GPI"
@2 STO “¥_@PI" 11 RCL "REGS"
63 R4 12 STO "R_GPI"
a4 STO “"Y_@PI" 13 RT

@3 R4 14 12

B STO “Z_@PL" 15 1

@7 R4 16 MEWMAT

@3 STO "T_QPI® 17 STO "REGS"
B9 LASTH 18 R4

DATAFILE V23 N2 Page 25

The stack contents and the numbered registers are saved. A new set of registers is
created (here of size 18, this size should of course be adapted to the individual
program). By using NEWMAT instead of SIZE it is ensured that the new registers
will not be complex regardless of whether REGS was complex or not upon calling
the program.

The real program logic would then start at program line 19. From there and
onwards all storage registers that the program manipulates would be the program’s
own local instances.

The careful reader would have noticed that only the contents of the X register is
preserved on the stack when reaching line 19. However, if needed, the contents of
the other stack levels could easily be recalled, e.g. by RCL “Y_prgname”.

The reason for having one named variable for each stack level and not using a 1x5
matrix for holding the contents of the stack levels is that the stack levels could
themselves be holding matrices or strings, which in turn are not allowed to be
stored in a matrix.

Restoring the stack

When the program eventually has finished the contents of the temporary variables
should be recalled to the stack and the variables deleted. For example the program
end could look like:

373 RCL "R_GPI™ 333 CLY "T_GrPI"
376 STO “"REGS" 386 CLY “Z2_GPI"
377 RCL "L_@PI" 387 CLV "Y_GPI"
378 STO ST L 328 CLY "®_GPI"
379 RCL "T_GPI" 389 EHND

328 RCL "Z_QPI"
381 RCL "Y_@PI"
382 RCL "X_@PI"
3832 CLV "R_GQPI"
384 CLV "L_GPI"

In this specific example all four stack levels are restored. If the program would
perform a calculation on X returning a new X value then only T, Z and Y should be
retrieved, X set to the new value and LASTX set to the old X value (and so on for
variants where more stack levels are involved).

This technique can seem trivial at a first look but actually provides a much more
mature feel to programs on the HP-42S when used! Try it out!

Note: An updated copy of the QPI program that was published in V22N4 and
which is used as an example in this article can be found at:
http:www.hp42s.com programs qpi qpi. html

Page 26 DATAFILE V23 N2



